Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report on an electrostatically formed nanowire (EFN)-based sensor with tunable diameters in the range of 16 nm to 46 nm and demonstrate an EFNbased field-effect transistor as a highly sensitive and robust room temperature gas sensor. The device was carefully designed and fabricated using standard integrated processing to achieve the 16 nm EFN that can be used for sensing without any need for surface modification. The effective diameter for the EFN was determined using Kelvin probe force microscopy accompanied by threedimensional electrostatic simulations. We show that the EFN transistor is capable of detecting 100 parts per million of ethanol gas with bare SiO2.
Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today 2005, 8, 20-28.
Cui, Y.; Wei, Q.; Park, H.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289-1292.
Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294-1301.
Paska, Y.; Stelzner, T.; Christiansen, S.; Haick, H. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors. ACS Nano 2011, 5, 5620-5626.
Chu, C. J.; Yeh, C. S.; Liao, C. K.; Tsai, L. -C.; Huang, C. -M.; Lin, H. -Y.; Shyue, J. - J.; Chen, Y. -T.; Chen, C. -D. Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano Lett. 2013, 13, 2564-2569.
Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208-211.
Cui, Y.; Zhong, Z.; Wang, D.; Wang, W. U.; Lieber, C. M. High performance silicon nanowire field effect transistors. Nano Lett. 2003, 3, 149-152.
Elibol, O.; Morisette, D.; Akin, D.; Denton, J.; Bashir, R. Integrated nanoscale silicon sensors using top-down fabrication. Appl. Phys. Lett. 2003, 83, 4613-4615.
Yang, C.; Zhong, Z.; Lieber, C. M. Encoding electronic properties by synthesis of axial modulation-doped silicon nanowires. Science 2005, 310, 1304-1307.
Tong, H. D.; Chen, S.; van der Wiel, W. G.; Carlen, E. T.; van den Berg, A. Novel top-down wafer-scale fabrication of single crystal silicon nanowires. Nano Lett. 2009, 9, 1015-1022.
Schmidt, V.; Wittemann, J.; Gösele, U. Growth, thermodynamics, and electrical properties of silicon nanowires. Chem. Rev. 2010, 110, 361-388.
McAlpine, M. C.; Ahmad, H.; Wang, D.; Heath, J. R. Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors. Nat. Mater. 2007, 6, 379-384.
Engel, Y.; Elnathan, R.; Pevzner, A.; Davidi, G.; Flaxer, E.; Patolsky, F. Supersensitive detection of explosives by silicon nanowire arrays. Angew. Chem. Int. Ed. 2010, 49, 6830-6835.
Niskanen, A.; Colli, A.; White, R.; Li, H.; Spigone, E.; Kivioja, J. Silicon nanowire arrays as learning chemical vapour classifiers. Nanotechnology 2011, 22, 295502.
Cao, A.; Sudhölter, E. J.; de Smet, L. C. Silicon nanowire- based devices for gas-phase sensing. Sensors 2013, 14, 245-271.
Paska, Y.; Stelzner, T.; Assad, O.; Tisch, U.; Christiansen, S.; Haick, H. Molecular gating of silicon nanowire field-effect transistors with nonpolar analytes. ACS Nano 2011, 6, 335-345.
Wang, B.; Haick, H. Effect of functional groups on the sensing properties of silicon nanowires toward volatile compounds. ACS Appl. Mater. Interfaces 2013, 5, 2289-2299.
Wang, B.; Cancilla, J. C.; Torrecilla, J. S.; Haick, H. Artificial Sensing Intelligence with Silicon Nanowires for Ultraselective Detection in the Gas Phase. Nano Lett. 2014, 14, 933-938.
Stern, E.; Klemic, J. F.; Routenberg, D. A.; Wyrembak, P. N.; Turner-Evans, D. B.; Hamilton, A. D.; LaVan, D. A.; Fahmy, T. M.; Reed, M. A. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature 2007, 445, 519-522.
Park, I.; Li, Z.; Pisano, A. P.; Williams, R. S. Top-down fabricated silicon nanowire sensors for real-time chemical detection. Nanotechnology 2010, 21, 015501.
Wu, J. M. A room temperature ethanol sensor made from p-type Sb-doped SnO2 nanowires. Nanotechnology 2010, 21, 235501.
Someya, T.; Small, J.; Kim, P.; Nuckolls, C.; Yardley, J. T. Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett. 2003, 3, 877-881.
Mirica, K. A.; Azzarelli, J. M.; Weis, J. G.; Schnorr, J. M.; Swager, T. M. Rapid prototyping of carbon-based chemiresistive gas sensors on paper. Proc. Natl. Acad. Sci. 2013, 110, E3265-E3270.
Liang, Y.; Chen, Y.; Wang, T. Low-resistance gas sensors fabricated from multiwalled carbon nanotubes coated with a thin tin oxide layer. Appl. Phys. Lett. 2004, 85, 666-668.
Chen, Y.; Zhu, C.; Wang, T. The enhanced ethanol sensing properties of multi-walled carbon nanotubes/SnO2 core/shell nanostructures. Nanotechnology 2006, 17, 3012.
Shalev, G.; Landman, G.; Amit, I.; Rosenwaks, Y.; Levy, I. Specific and label-free femtomolar biomarker detection with an electrostatically formed nanowire biosensor. NPG Asia Mater. 2013, 5, e41.
Cristoloveanu, S.; Blalock, B.; Allibert, F.; Dufrene, B.; Mojarradi, M. The four-gate transistor. In Proceedings of the European Solid-State Device Research Conference. 2002, pp 323-326.
Blalock, B. J.; Cristoloveanu, S.; Dufrene, B. M.; Allibert, F.; Mojarradi, M. M. The multiple-gate MOS-JFET transistor. Int. J. High Speed Electron. Syst. 2002, 12, 511-520.
Balestra, F.; Cristoloveanu, S.; Benachir, M.; Brini, J.; Elewa, T. Double-gate silicon-on-insulator transistor with volume inversion: A new device with greatly enhanced performance. IEEE Electron Device Lett. 1987, 8, 410-412.
Grunbaum, E.; Barkay, Z.; Shapira, Y.; Barnham, K.; Bushnell, D.; Ekins-Daukes, N.; Mazzer, M.; Wilshaw, P. The electric field and dopant distribution in p-i-n structures observed by ionisation potential (dopant contrast) microscopy in the HRSEM. In Microscopy of Semiconducting Materials. Cullis, A. G., Hutchison J. L., Eds.; Springer: Berlin Heidelberg, 2005, pp 503-506.
Nonnenmacher, M.; Oboyle, M.; Wickramasinghe, H. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921-2923.
Glatzel, T. In Kelvin Probe Force Microscopy. Sadewasser, S., Glatzel, T., Eds.; Springer Series in Surface Sciences; Springer: Berlin Heidelberg, 2011, pp 289-327.
Koren, E.; Rosenwaks, Y.; Allen, J.; Hemesath, E.; Lauhon, L. Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 2009, 95, 092105.
Shaya, O.; Shaked, M.; Usherenko, Y.; Halpern, E.; Shalev, G.; Doron, A.; Levy, I.; Rosenwaks, Y. Tracing the mechanism of molecular gated transistors. J. Phys. Chem. C 2009, 113, 6163-6168.
Masetti, G.; Severi, M.; Solmi, S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon. IEEE Trans. Electron Devices 1983, 30, 764-769.
Palik, E. D. Handbook of Optical Constants of Solids. Academic press, 1998, Vol. 3.
Kikukawa, A.; Hosaka, S.; Imura, R. Silicon pn junction imaging and characterizations using sensitivity enhanced Kelvin probe force microscopy. Appl. Phys. Lett. 1995, 66, 3510-3512.
Glatzel, T.; Sadewasser, S.; Lux-Steiner, M. C. Amplitude or frequency modulation-detection in Kelvin probe force microscopy. Appl. Surf. Sci. 2003, 210, 84-89.