AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Mode-synthesizing atomic force microscopy for 3D reconstruction of embedded low-density dielectric nanostructures

Pauline Vitry1Eric Bourillot1( )Cédric Plassard1Yvon Lacroute1Eric Calkins2,3Laurene Tetard2,3Eric Lesniewska1
Physics DepartmentUniversity of BourgogneAvenue Alain Savary UMR CNRS 6303210786Cedex, France
Nanoscience Technology CenterUniversity of Central FloridaOrlandoFL32826USA
Department of PhysicsUniversity of Central FloridaOrlandoFL32826USA
Show Author Information

Graphical Abstract

Abstract

Challenges in nanoscale characterization call for non-invasive, yet sensitive subsurface characterization of low-density materials such as polymers. In this work, we present new evidence that mode-synthesizing atomic force microscopy can be used to detect minute changes in low-density materials, such as those engendered in electro-sensitive polymers during electron beam lithography, surpassing all common nanoscale mechanical techniques.

Moreover, we propose 3D reconstruction of the exposed polymer regions using successive high-resolution frames acquired at incremental depths inside the sample. In addition, the results clearly show the influence of increasing dwell time on the depth profile of the nano-sized exposed regions. Hence, the simple approach described here can be used for achieving sensitive nanoscale tomography of soft materials with promising applications in material sciences and biology.

References

1

Garcia, R.; Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. nanotechnol. 2012, 7, 217-226.

2

Plassard, C.; Bourillot, E.; Rossignol, J.; Lacroute, Y.; Lepleux, E.; Pacheco, L.; Lesniewska, E. Detection of defects buried in metallic samples by scanning microwave microscopy. Phys. Rev. B 2011, 83, 121409.

3

Cuberes, M. T. Intermittent-contact heterodyne force microscopy. J. Nanomater. 2009, 8, 762016.

4

Shekhawat, G. S.; Dravid, V. P. Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 2005, 310, 89-92.

5

Shekhawat, G. S.; Avasthy, S.; Srivastava, A. K.; Tark, S. -H.; Dravid, V. P. Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE T. Nanotechnol. 2010, 9, 671-674.

6

Tetard, L.; Passian, A.; Venmar, K. T.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Thundat, T. Imaging nanoparticles in cells by nanomechanical holography. Nat. nanotechnol. 2008, 3, 501-505.

7

Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E. From surface to intracellular non-invasive nanoscale study of living cells impairments. Nanotechnology 2014, 25, 295101.

8

Burnham, N. A.; Kulik, A. J.; Gremaud, G.; Gallo, P. -J.; Oulevey, F. Scanning local‐acceleration microscopy. J. Vac. Sci. Technol. B 1996, 14, 794-799.

9

Fukuma, T.; Kobayashi, K.; Matsushige, K.; Yamada, H. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 2005, 87, 034101.

10

Rabe, U.; Arnold, W. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 1994, 64, 1493-1495.

11

Verbiest, G. J.; Simon, J. N.; Oosterkamp, T. H.; Rost, M. J. Subsurface atomic force microscopy: Towards a quantitative understanding. Nanotechnology 2012, 23, 145704.

12

Kolosov, O. V.; Castell, M. R.; Marsh, C. D.; Briggs, G. A. D.; Kamins, T. I.; Williams, R. S. Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 1998, 81, 1046.

13
Passian, A.; Thundat, T.; Tetard, L. Mode synthesizing atomic force microscopy and mode-synthesizing sensing. U.S. Patent 12/726, 083, Mar. 17, 2010.
14

Tetard, L.; Passian, A.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Dravid, V.; Thundat, T. Elastic phase response of silica nanoparticles buried in soft matter. Appl. Phys. Lett. 2008, 93, 133113.

15

Ngwa, W.; Luo, W.; Kamanyi, A.; Fomba, K. W.; Grill, W. Characterization of polymer thin films by phase‐sensitive acoustic microscopy and atomic force microscopy: A comparative review. J. Microsc. 2005, 218, 208-218.

16

Passeri, D.; Rossi, M.; Alippi, A.; Bettucci, A.; Terranova, M. L.; Tamburri, E.; Toschi, F. Characterization of epoxy/ single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 2008, 40, 2419-2424.

17

Crozier, K. B.; Yaralioglu, G. G.; Degertekin, F. L.; Adams, J. D.; Minne, S. C.; Quate, C. F. Thin film characterization by atomic force microscopy at ultrasonic frequencies. Appl. Phys. Lett. 2000, 76, 1950-1952.

18

Rose, J. L. A baseline and vision of ultrasonic guided wave inspection potential. J. Pressure Vessel Technol. 2002, 124, 273-282.

19

Tsuji, T.; Yamanaka, K. Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite. Nanotechnology 2001, 12, 301.

20

Yamanaka, K.; Ogiso, H.; Kolosov, O. Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 1994, 64, 178-180.

21

Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 1975, 53, 314-326.

22

Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Tetard, L.; Lesniewska, E. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy. Appl. Phys. Lett. 2014, 105, 053110.

Nano Research
Pages 2199-2205
Cite this article:
Vitry P, Bourillot E, Plassard C, et al. Mode-synthesizing atomic force microscopy for 3D reconstruction of embedded low-density dielectric nanostructures. Nano Research, 2015, 8(7): 2199-2205. https://doi.org/10.1007/s12274-015-0728-8

680

Views

16

Crossref

N/A

Web of Science

17

Scopus

0

CSCD

Altmetrics

Received: 20 October 2014
Revised: 07 January 2015
Accepted: 14 January 2015
Published: 27 May 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return