Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Challenges in nanoscale characterization call for non-invasive, yet sensitive subsurface characterization of low-density materials such as polymers. In this work, we present new evidence that mode-synthesizing atomic force microscopy can be used to detect minute changes in low-density materials, such as those engendered in electro-sensitive polymers during electron beam lithography, surpassing all common nanoscale mechanical techniques.
Moreover, we propose 3D reconstruction of the exposed polymer regions using successive high-resolution frames acquired at incremental depths inside the sample. In addition, the results clearly show the influence of increasing dwell time on the depth profile of the nano-sized exposed regions. Hence, the simple approach described here can be used for achieving sensitive nanoscale tomography of soft materials with promising applications in material sciences and biology.
Garcia, R.; Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. nanotechnol. 2012, 7, 217-226.
Plassard, C.; Bourillot, E.; Rossignol, J.; Lacroute, Y.; Lepleux, E.; Pacheco, L.; Lesniewska, E. Detection of defects buried in metallic samples by scanning microwave microscopy. Phys. Rev. B 2011, 83, 121409.
Cuberes, M. T. Intermittent-contact heterodyne force microscopy. J. Nanomater. 2009, 8, 762016.
Shekhawat, G. S.; Dravid, V. P. Nanoscale imaging of buried structures via scanning near-field ultrasound holography. Science 2005, 310, 89-92.
Shekhawat, G. S.; Avasthy, S.; Srivastava, A. K.; Tark, S. -H.; Dravid, V. P. Probing buried defects in extreme ultraviolet multilayer blanks using ultrasound holography. IEEE T. Nanotechnol. 2010, 9, 671-674.
Tetard, L.; Passian, A.; Venmar, K. T.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Thundat, T. Imaging nanoparticles in cells by nanomechanical holography. Nat. nanotechnol. 2008, 3, 501-505.
Ewald, M.; Tetard, L.; Elie-Caille, C.; Nicod, L.; Passian, A.; Bourillot, E.; Lesniewska, E. From surface to intracellular non-invasive nanoscale study of living cells impairments. Nanotechnology 2014, 25, 295101.
Burnham, N. A.; Kulik, A. J.; Gremaud, G.; Gallo, P. -J.; Oulevey, F. Scanning local‐acceleration microscopy. J. Vac. Sci. Technol. B 1996, 14, 794-799.
Fukuma, T.; Kobayashi, K.; Matsushige, K.; Yamada, H. True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 2005, 87, 034101.
Rabe, U.; Arnold, W. Acoustic microscopy by atomic force microscopy. Appl. Phys. Lett. 1994, 64, 1493-1495.
Verbiest, G. J.; Simon, J. N.; Oosterkamp, T. H.; Rost, M. J. Subsurface atomic force microscopy: Towards a quantitative understanding. Nanotechnology 2012, 23, 145704.
Kolosov, O. V.; Castell, M. R.; Marsh, C. D.; Briggs, G. A. D.; Kamins, T. I.; Williams, R. S. Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy. Phys. Rev. Lett. 1998, 81, 1046.
Tetard, L.; Passian, A.; Lynch, R. M.; Voy, B. H.; Shekhawat, G.; Dravid, V.; Thundat, T. Elastic phase response of silica nanoparticles buried in soft matter. Appl. Phys. Lett. 2008, 93, 133113.
Ngwa, W.; Luo, W.; Kamanyi, A.; Fomba, K. W.; Grill, W. Characterization of polymer thin films by phase‐sensitive acoustic microscopy and atomic force microscopy: A comparative review. J. Microsc. 2005, 218, 208-218.
Passeri, D.; Rossi, M.; Alippi, A.; Bettucci, A.; Terranova, M. L.; Tamburri, E.; Toschi, F. Characterization of epoxy/ single-walled carbon nanotubes composite samples via atomic force acoustic microscopy. Physica E 2008, 40, 2419-2424.
Crozier, K. B.; Yaralioglu, G. G.; Degertekin, F. L.; Adams, J. D.; Minne, S. C.; Quate, C. F. Thin film characterization by atomic force microscopy at ultrasonic frequencies. Appl. Phys. Lett. 2000, 76, 1950-1952.
Rose, J. L. A baseline and vision of ultrasonic guided wave inspection potential. J. Pressure Vessel Technol. 2002, 124, 273-282.
Tsuji, T.; Yamanaka, K. Observation by ultrasonic atomic force microscopy of reversible displacement of subsurface dislocations in highly oriented pyrolytic graphite. Nanotechnology 2001, 12, 301.
Yamanaka, K.; Ogiso, H.; Kolosov, O. Ultrasonic force microscopy for nanometer resolution subsurface imaging. Appl. Phys. Lett. 1994, 64, 178-180.
Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid Interf. Sci. 1975, 53, 314-326.
Vitry, P.; Bourillot, E.; Plassard, C.; Lacroute, Y.; Tetard, L.; Lesniewska, E. Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy. Appl. Phys. Lett. 2014, 105, 053110.