AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Electrically tunable pore morphology in nanoporous gold thin films

Tatiana S. DorofeevaErkin Seker( )
Department of Electrical and Computer EngineeringUniversity of California–DavisDavisCA95616USA
Show Author Information

Graphical Abstract

Abstract

Nanoporous gold (np-Au) is an emerging nanostructured material that exhibits many desirable properties, including high electrical and thermal conductivity, high surface area-to-volume ratio, tunable pore morphology, well-established surface-binding chemistry, and compatibility with microfabrication. These features make np-Au a popular material for use in fuel cells, optical and electrical biosensors, drug delivery vehicles, neural electrode coatings, and as a model system for nanoscale mechanics. In each of its many applications, np-Au morphology plays an essential role in the overall device operation. Therefore, precise morphological control is necessary to attain optimal device performance. Traditionally, thermal treatment by furnaces and hot plates is used to obtain np-Au with self-similar but coarser morphologies. However, this approach lacks the ability to create different morphologies on a single substrate and requires high temperatures (> 250 ℃) incompatible with most plastic substrates. Herein, we report electro-annealing as a novel method that permits control of the extent and location of pore coarsening on a single substrate in one fast treatment step. The electro-annealing entails much lower temperatures (< 150 ℃) than traditional thermal treatment, putatively due to electrically assisted phenomena contributing to the thermally activated surface diffusion of gold atoms, responsible for coarsening. Overall, this approach is easily scaled to display multiple pore morphologies on a single chip, therefore enabling high-throughput screening of optimal nanostructures for specific applications.

Electronic Supplementary Material

Download File(s)
12274_2015_726_MOESM1_ESM.pdf (1.1 MB)

References

1

Gleiter, H. Nanostructured materials: Basic concepts and microstructure. Acta Mater. 2000, 48, 1-29.

2

Suryanarayana, C. Recent developments in nanostructured materials. Adv. Eng. Mater. 2005, 7, 983-992.

3

Zhang, X.; Xie, H. Q.; Fujii, M.; Ago, H.; Takahashi, K.; Ikuta, T.; Abe, H.; Shimizu, T. Thermal and electrical conductivity of a suspended platinum nanofilm. Appl. Phys. Lett. 2005, 86, 171912.

4

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.

5

Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nano. 2010, 5, 391-400.

6

Seker, E.; Reed, M.; Begley, M. Nanoporous gold: Fabrication, characterization, and applications. Materials 2009, 2, 2188- 2215.

7

Xiao, X. X.; Wang, M. E.; Li, H.; Si, P. C. One-step fabrication of bio-functionalized nanoporous gold/poly(3, 4- ethylenedioxythiophene) hybrid electrodes for amperometric glucose sensing. Talanta 2013, 116, 1054-1059.

8

Hu, K. C.; Lan, D. X.; Li, X. M.; Zhang, S. S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem. 2008, 80, 9124-9130.

9

Seker, E.; Berdichevsky, Y.; Begley, M.; Reed, M.; Staley, K.; Yarmush, M. The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies. Nanotechnology 2010, 21, 125504.

10

Seker, E.; Berdichevsky, Y.; Staley, K. J.; Yarmush, M. L. Microfabrication-compatible nanoporous gold foams as biomaterials for drug delivery. Adv. Healthc. Mater. 2012, 1, 172-176.

11

Tan, Y. H.; Schallom, J. R.; Ganesh, N. V.; Fujikawa, K.; Demchenko, A. V.; Stine, K. J. Characterization of protein immobilization on nanoporous gold using atomic force microscopy and scanning electron microscopy. Nanoscale 2011, 3, 3395-3407.

12

Patel, J.; Radhakrishnan, L.; Zhao, B.; Uppalapati, B.; Daniels, R. C.; Ward, K. R.; Collinson, M. M. Electrochemical properties of nanostructured porous gold electrodes in biofouling solutions. Anal. Chem. 2013, 85, 11610-11618.

13

Lang, X. Y.; Hirata, A.; Fujita, T.; Chen, M. Three- dimensional hierarchical nanoporosity for ultrahigh power and excellent cyclability of electrochemical pseudocapacitors. Adv. Energy Mater. 2014, 4, 1301809.

14

Kucheyev, S.; Hayes, J.; Biener, J.; Huser, T.; Talley, C.; Hamza, A. Surface-enhanced Raman scattering on nanoporous Au. Appl. Phys. Lett. 2006, 89, 053102-053104.

15

Santos, G. M.; Zhao, F.; Zeng, J.; Shih, W. C. Characterization of nanoporous gold disks for photothermal light harvesting and light-gated molecular release. Nanoscale 2014, 6, 5718-5724.

16

Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Bäumer, M. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319-322.

17

Xu, C. X.; Su, J. X.; Xu, X. H.; Liu, P. P.; Zhao, H. J.; Tian, F.; Ding, Y. Low temperature co oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2006, 129, 42-43.

18

Lee, D.; Wei, X.; Chen, X.; Zhao, M.; Jun, S.; Hone, J.; Herbert, E.; Oliver, W.; Kysar, J. Microfabrication and mechanical properties of nanoporous gold at the nanoscale. Scripta Mater. 2007, 56, 437-440.

19

Jin, H. J.; Weissmüller, J. A material with electrically tunable strength and flow stress. Science 2011, 332, 1179-1182.

20

Kurtulus, O.; Daggumati, P.; Seker, E. Molecular release from patterned nanoporous gold thin films. Nanoscale 2014, 6, 7062-7071.

21

Senior, N.; Newman, R. Synthesis of tough nanoporous metals by controlled electrolytic dealloying. Nanotechnology 2006, 17, 2311-2316.

22

Erlebacher, J. An atomistic description of dealloying. J. Electrochem. Soc. 2004, 151, C614-C626.

23

Hakamada, M.; Mabuchi, M. Thermal coarsening of nanoporous gold: Melting or recrystallization. J. Mater. Res. 2009, 24, 301-304.

24

Fujita, T.; Qian, L. H.; Inoke, K.; Erlebacher, J.; Chen, M. W. Three-dimensional morphology of nanoporous gold. Appl. Phys. Lett. 2008, 92, 251902.

25

Qian, L. H.; Chen, M. W. Ultrafine nanoporous gold by low- temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 2007, 91, 083105.

26

Detsi, E.; van de Schootbrugge, M.; Punzhin, S.; Onck, P. R.; De Hosson, J. T. M. On tuning the morphology of nanoporous gold. Scripta Mater. 2011, 64, 319-322.

27

Dong, H.; Cao, X. D. Nanoporous gold thin film: Fabrication, structure evolution, and electrocatalytic activity. J. Phys. Chem. C 2008, 113, 603-609.

28

Hakamada, M.; Mabuchi, M. Microstructural evolution in nanoporous gold by thermal and acid treatments. Mater. Lett. 2008, 62, 483-486.

29

Schade, L.; Franzka, S.; Mathieu, M.; Biener, M. M.; Biener, J.; Hartmann, N. Photothermal laser microsintering of nanoporous gold. Langmuir 2014, 30, 7190-7197.

30

Klein, R. Laser Welding of Plastics. Wiley: 2011.

31

Daggumati, P.; Kurtulus, O.; Chapman, C. A. R.; Dimlioglu, D.; Seker, E. Microfabrication of nanoporous gold patterns for cell-material interaction studies. 2013, e50678.

32

Sezgin, M.; Sankur, B. Survey over image thresholding techniques and quantitative performance evaluation. J. Electron. Imaging 2004, 13, 146-168.

33

Hodge, A. M.; Biener, J.; Hayes, J. R.; Bythrow, P. M.; Volkert, C. A.; Hamza, A. V. Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 2007, 55, 1343-1349.

34

Li, R.; Sieradzki, K. Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 1992, 68, 1168-1171.

35

Erlebacher, J. Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys. Rev. Lett. 2011, 106, 225504.

36

Trouwborst, M. L.; van der Molen, S. J.; van Wees, B. J. The role of joule heating in the formation of nanogaps by electromigration. J. App. Phys. 2006, 99, 114316.

37

Hadeed, F. O.; Durkan, C. Controlled fabrication of 1-2 nm nanogaps by electromigration in gold and gold-palladium nanowires. Appl. Phys. Lett. 2007, 91, 123120.

38

Fujita, T.; Okada, H.; Koyama, K.; Watanabe, K.; Maekawa, S.; Chen, M. W. Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields. Phys. Rev. Lett. 2008, 101, 166601.

39

Liu, Z.; Searson, P. C. Single nanoporous gold nanowire sensors. J. Phys. Chem. B 2006, 110, 4318-4322.

40

Munoz, R. C. Resistivity induced by a rough surface of thin gold films deposited on mica. J. Mol. Catal. A-Chem. 2005, 228, 163-175.

41

Biener, M. M.; Biener, J.; Wichmann, A.; Wittstock, A.; Baumann, T. F.; Bäumer, M.; Hamza, A. V. Ald functionalized nanoporous gold: Thermal stability, mechanical properties, and catalytic activity. Nano Lett. 2011, 11, 3085-3090.

Nano Research
Pages 2188-2198
Cite this article:
Dorofeeva TS, Seker E. Electrically tunable pore morphology in nanoporous gold thin films. Nano Research, 2015, 8(7): 2188-2198. https://doi.org/10.1007/s12274-015-0726-x

696

Views

23

Crossref

N/A

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 14 October 2014
Revised: 05 January 2015
Accepted: 13 January 2015
Published: 18 April 2015
© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015
Return