AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control

Ran Long§Di Wu§Yaping LiYu BaiChengming WangLi SongYujie Xiong( )
Hefei National Laboratory for Physical Sciences at the MicroscaleCollaborative Innovation Center of Chemistry for Energy MaterialsSchool of Chemistry and Materials Scienceand National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiAnhui230026China

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Heterogeneous catalysis occurs through a process of interfacial reactions; therefore, both surface facet and size control can increase catalytic efficiency. Octahedral Pd nanocrystals, enclosed by {111} facets, should be the ideal geometrical shape for Heck coupling reactions; however, it is challenging to synthesize 5 nm Pd octahedrons with a relatively uniform size distribution using existing capping-agent techniques. Here, we used palladium as a model system to investigate how the kinetics of atomic addition could be precisely controlled using a syringe pump. As a result, our method produced Pd octahedrons as small as 5 nm, which increased the catalytic efficiency of Heck coupling reactions while reducing the weight of catalyst used.

Electronic Supplementary Material

Download File(s)
12274_2015_722_MOESM1_ESM.pdf (2.3 MB)

References

1

Akiyama, R.; Kobayashi, S. The polymer incarcerated method for the preparation of highly active heterogeneous palladium catalysts. J. Am. Chem. Soc. 2003, 125, 3412-3413.

2

Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. D. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 2006, 45, 7824-7828.

3

Long, R.; Mao, K. K.; Ye, X. D.; Yan, W. S.; Huang, Y. B.; Wang, J. Y.; Fu, Y.; Wang, X. S.; Wu, X. J.; Xie, Y.; et al. Surface facet of palladium nanocrystals: A key parameter to the activation of molecular oxygen for organic catalysis and cancer treatment. J. Am. Chem. Soc. 2013, 135, 3200-3207.

4

Wang, C.; Daimon, H.; Onodera, T.; Koda, T.; Sun, S. H. A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew. Chem. Int. Ed. 2008, 47, 3588-3591.

5

Bratlie, K. M.; Lee, H.; Komvopoulos, K.; Yang, P. D.; Somorjai, G. A. Platinum nanoparticle shape effects on benzene hydrogenation selectivity. Nano Lett. 2007, 7, 3097-3101.

6

Xiong, Y. J.; Wiley, B.; Xia, Y. N. Nanocrystals with unconventional shapes—A class of promising catalysts. Angew. Chem. Int. Ed. 2007, 46, 7157-7159.

7

Collins, G.; Schmidt, M.; O'Dwyer, C.; Holmes, J. D.; McGlacken, G. P. The origin of shape sensitivity in palladium- catalyzed Suzuki-Miyaura cross coupling reactions. Angew. Chem. Int. Ed. 2014, 53, 4142-4145.

8

Long, R.; Mao, K. K.; Gong, M.; Zhou, S.; Hu, J. H.; Zhi, M.; You, Y.; Bai, S.; Jiang, J.; Zhang, Q.; et al. Tunable oxygen activation for catalytic organic oxidation: Schottky junction versus plasmonic effects. Angew. Chem. Int. Ed. 2014, 53, 3205-3209.

9

Xiong, Y. J.; Brunson, M.; Huh, J.; Huang, A.; Coster, A.; Wendt, K.; Fay, J.; Qin, D. The role of surface chemistry on the toxicity of ag nanoparticles. Small 2013, 9, 2628-2638.

10

Narayanan, R.; El-Sayed, M. A. Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution. Nano Lett. 2004, 4, 1343-1348.

11

Wang, Z. C.; Chen, W.; Han, Z. L.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D. K.; Chen, Y.; Huang, S. M. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254-1262.

12

Choi, H. R.; Woo, H.; Jang, S.; Cheon, J. Y.; Kim, C.; Park, J.; Park, K. H.; Joo, S. H. Ordered mesoporous carbon supported colloidal Pd nanoparticle based model catalysts for Suzuki coupling reactions: Impact of organic capping agents. Chemcatchem 2012, 4, 1587-1594.

13

Kalbasi, R. J.; Mosaddegh, N.; Abbaspourrad, A. A novel catalyst containing palladium nanoparticles supported on poly(2-hydroxyethyl methacrylate)/CMK-1: Synthesis, characterization and comparison with mesoporous silica nanocomposite. Appl. Catal. A-Gen. 2012, 423, 78-90.

14

Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. Designed synthesis of atom-economical pd/ni bimetallic nanoparticle-based catalysts for sonogashira coupling reactions. J. Am. Chem. Soc. 2004, 126, 5026-5027.

15

Metin, O.; Ho, S. F.; Alp, C.; Can, H.; Mankin, M. N.; Gultekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10-18.

16

Gan, L.; Cui, C. C.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 2014, 346, 1502-1506.

17

Hardeveld, R. V.; Hartog, F. The statistics of surface atoms and surface sites on metal crystals. Sur. Sci. 1969, 15, 189-230.

18

Jin, M. S.; Liu, H. Y.; Zhang, H.; Xie, Z. X.; Liu, J. Y.; Xia, Y. N. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes < 10 nm for application in CO oxidation. Nano Res. 2011, 4, 83-91.

19

Li, B.; Long, R.; Zhong, X. L.; Bai, Y.; Zhu, Z. J.; Zhang, X.; Zhi, M.; He, J. W.; Wang, C. M.; Li, Z. -Y.; et al. Investigation of size-dependent plasmonic and catalytic properties of metallic nanocrystals enabled by size control with HCl oxidative etching. Small 2012, 8, 1710-1716.

20

Huang, X. Q.; Tang, S. H.; Zhang, H. H.; Zhou, Z. Y.; Zheng, N. F. Controlled formation of concave tetrahedral/trigonal bipyramidal palladium nanocrystals. J. Am. Chem. Soc. 2009, 131, 13916-13917.

21

Xiong, Y. J.; Cai, H. G.; Wiley, B. J.; Wang, J. G.; Kim, M. J.; Xia, Y. N. Synthesis and mechanistic study of palladium nanobars and nanorods. J. Am. Chem. Soc. 2007, 129, 3665-3675.

22

Zeng, J.; Zheng, Y. Q.; Rycenga, M.; Tao, J.; Li, Z. -Y.; Zhang, Q. A.; Zhu, Y. M.; Xia, Y. N. Controlling the shapes of silver nanocrystals with different capping agents. J. Am. Chem. Soc. 2010, 132, 8552-8553.

23

Xiong, Y. J.; McLellan, J. M.; Yin, Y. D.; Xia, Y. N. Synthesis of palladium icosahedra with twinned structure by blocking oxidative etching with citric acid or citrate ions. Angew. Chem. Int. Ed. 2007, 46, 790-794.

24

Shao, M. H.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. N. Electrocatalysis on shape-controlled palladium nanocrystals: Oxygen reduction reaction and formic acid oxidation. J. Phys. Chem. C 2013, 117, 4172-4180.

25

Lim, B.; Xiong, Y. J.; Xia, Y. N. A water-based synthesis of octahedral, decahedral, and icosahedral Pd nanocrystals. Angew. Chem. Int. Ed. 2007, 46, 9279-9282.

26

Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Polyhedral silver nanocrystals with distinct scattering signatures. Angew. Chem. Int. Ed. 2006, 45, 4597-4601.

27

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape- controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem. Int. Ed. 2008, 48, 60-103.

28

Xiong, Y. J.; Chen, J. Y.; Wiley, B.; Xia, Y. N.; Aloni, S.; Yin, Y. D. Understanding the role of oxidative etching in the polyol synthesis of Pd nanoparticles with uniform shape and size. J. Am. Chem. Soc. 2005, 127, 7332-7333.

29

Gladysz, J. A. Recoverable catalysts. Ultimate goals, criteria of evaluation, and the green chemistry interface. Pure Appl. Chem. 2001, 73, 1319-1324.

Nano Research
Pages 2115-2123
Cite this article:
Long R, Wu D, Li Y, et al. Enhancing the catalytic efficiency of the Heck coupling reaction by forming 5 nm Pd octahedrons using kinetic control. Nano Research, 2015, 8(6): 2115-2123. https://doi.org/10.1007/s12274-015-0722-1

463

Views

17

Crossref

N/A

Web of Science

18

Scopus

6

CSCD

Altmetrics

Received: 18 November 2014
Revised: 10 January 2015
Accepted: 12 January 2015
Published: 19 May 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return