Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The piezoelectric properties of [0001]-oriented ZnO nanowires are investigated via density functional theory (DFT). The axial effective piezoelectric coefficient of ZnO nanowires is significantly greater than the bulk value, and the coefficient increases as the nanowire size decreases. It is proved that the enhancement comes from both the reduction of volume per Zn-O pair and the enhancement of the Poisson's ratio. Further study shows that the macroscopic polarization behavior of ZnO nanowires is determined by the crystal structure parameters and the ratio of surface atoms, and an analytic expression is obtained. This work provides a deeper understanding of the size effects of the piezoelectricity of ZnO nanowires and sheds some light on the confusion reported on this subject.
Zhang, Y.; Yan, X. Q.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotronic effect in ZnO nanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647-4655.
Zhang, Z.; Liao, Q. L.; Yan, X. Q.; Wang, Z. L.; Wang, W. D.; Sun, X.; Lim, P.; Huang, Y. H.; Zhang, Y. Functional nanogenerators as vibration sensors enhanced by piezotronic effects. Nano Res. 2014, 7, 190-198.
Liao, Q. L.; Zhang, Z.; Zhang, X. H.; Mohr, M.; Zhang, Y.; Fecht, H. -J. Flexible piezoelectric nanogenerators based on a fiber/ZnO nanowires/paper hybrid structure for energy harvesting. Nano Res. 2014, 7, 917-928.
Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102-105.
Lin, P.; Chen, X.; Yan, X. Q.; Zhang, Z.; Yuan, H. G.; Li, P. F.; Zhao, Y. G.; Zhang, Y. Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering. Nano Res. 2014, 7, 860-868.
Wang, Z. L. Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics. Nano Today 2010, 5, 540-552.
Yu, R. M.; Pan, C. F.; Hu, Y. F.; Li, L.; Liu, H. F.; Liu, W. Chua, S.; Chi, D. Z.; Wang, Z. L. Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Res. 2013, 6, 758-766.
Liu, B.; Zeng, H. C. Direct growth of enclosed ZnO nanotubes. Nano Res. 2009, 2, 201-209.
Yin, X.; Wang, B.; He, M.; He, T. Facile synthesis of ZnO nanocrystals via a solid state reaction for high performance plastic dye-sensitized solar cell. Nano Res. 2012, 5, 1-10.
Li, P. F.; Liao, Q. L.; Yang, S. Z.; Bai, X. D.; Huang, Y. H.; Yan, X. Q.; Zhang, Z.; Liu, S.; Lin, P.; Kang, Z., et al. In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain. Nano Lett. 2014, 14, 480-485.
Son, D. I.; Kwon, B.W.; Yang, J. D.; Park, D. H.; Seo, W. S.; Lee, H.; Yi, Y.; Lee, C. L.; Chio, W. K. Charge separation and ultraviolet photovoltaic conversion of ZnO quantum dots conjugated with graphene nanoshell. Nano Res. 2012, 5, 747-761.
Hu, G. F.; Zhou, R. R.; Yu, R. M.; Dong, L.; Pan, C. F.; Wang, Z. L. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 2014, 7, 1083-1091.
Xu, F.; Qin, Q. Q.; Mishra, A.; Gu, Y.; Zhu, Y. Mechanical properties of ZnO nanowires under different loading modes. Nano Res. 2010, 3, 271-280.
Wu, X. F.; Vanderbilt, D.; Hamann, D. R. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Phys. Rev. B 2005, 72, 035105.
Noel, Y.; Llunell, M.; Orlando, R.; D'Arco, P.; Dovesi, R. Performance of various Hamiltonians in the study of the piezoelectric properties of crystalline compounds: The case of BeO and ZnO. Phys. Rev. B, 2002, 66, 214107.
Li, C.; Guo W. L.; Kong Y.; Gao H. J. First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures. Phys. Rev. B, 2007, 76, 035322.
Xiang, H. J.; Yang, J. L.; Hou, J. G.; Zhu, Q. S. Piezoelectricity in ZnO nanowires: A first-principles study. Appl. Phys. Lett. 2006, 89, 223111.
Agrawal, R.; Espinosa, H. D. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires. A first principles investigation. Nano Lett. 2011, 11, 786-790.
Cicero, G.; Ferretti, A.; Catellani, A. Surface-induced polarity inversion in ZnO nanowires. Phys. Rev. B 2009, 80, 201304.
Korir, K. K.; Cicero, G.; Catellani, A. Piezoelectric properties of zinc oxide nanowires: An ab initio study. Nanotechnology 2013, 24, 475401.
Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. : Condens. Matter 2002, 14, 2745-2779.
Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993-2006.
King-Smith, R. D.; Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 1993, 47, 1651-1654.
Resta, R. Macroscopic polarization in crystalline dielectrics: The geometric phase approach. Rev. Mod. Phys. 1994, 66, 899-915.
Yoshio, K.; Onodera, A.; Satoh, H.; Sakagami, N.; Yamashita, H. Crystal structure of ZnO: Li at 293 K and 19 K by X-ray diffraction. Ferroelectrics 2001, 264, 133-138.
Huang, Y. H.; Zhang, Y.; Wang, X. Q.; Bai, X. D.; Gu, Y. S.; Yan, X. Q.; Liao, Q. L.; Qi, J. J.; Liu, J. Size independence and doping dependence of bending modulus in ZnO nanowires. Cryst. Growth Des. 2009, 9, 1640-1642.
Hoang, M. T.; Yvonnet, J.; Mitrushchenkov, A.; Chambaud, G. First-principles based multiscale model of piezoelectric nanowires with surface effects. J. Appl. Phys. 2013, 113, 104309.
Pant, P.; Budai, J. D.; Aggarwal, R.; Narayan, R. J.; Narayan, J. Structure characterization of two-step growth of epitaxial ZnO films on sapphire substrates at low temperatures. J. Phys. D: Appl. Phys. 2009, 42, 105409.
Mirnezhad, M.; Ansari, R.; Rouhi, H. Effects of hydrogen adsorption on mechanical properties of chiral single walled zinc oxide nanotubes. J. Appl. Phys. 2012, 111, 04308.
Peng, Q.; Liang, C.; Ji, W.; De, S. A first principles investigation of the mechanical properties of g-ZnO: The graphene- like hexagonal zinc oxide monolayer. Comp. Mater. Sci. 2013, 68, 320-324.