Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
High-purity straight and discrete multiwalled boron nitride nanotubes (BNNTs) were grown via a boron oxide vapor reaction with ammonia using LiNO3 as a promoter. Only a trace amount of boron oxide was detected as an impurity in the BNNTs by energy-dispersive X-ray (EDX) and Raman spectroscopies. Boron oxide vapor was generated from a mixture of B, FeO, and MgO powders heated to 1, 150 ℃, and it was transported to the reaction zone by flowing ammonia. Lithium nitrate was applied to the upper side of a BN bar from a water solution. The bar was placed along a temperature gradient zone in a horizontal tubular furnace. BNNTs with average diameters of 30-50 nm were mostly observed in a temperature range of 1, 280-1, 320 ℃. At higher temperatures, curled polycrystalline BN fibers appeared. Above 1, 320 ℃, the number of BNNTs drastically decreased, whereas the quantity and diameter of the fibers increased. The mechanism of BNNT and fiber growth is proposed and discussed.
Chopra, N. G.; Luyken, R. J.; Cherrey, K; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966-967.
Wei, X. L.; Wang, M. S.; Bando, Y; Golberg, D. Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater. 2010, 22, 4895-4899.
Chopra, N. G.; Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 1998, 105, 297-300.
Lee, C.; Wei, X. D.; Kysar J. W.; Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
Golberg, D.; Costa, P. M. F. J.; Mitome, M.; Bando, Y. Nanotubes in a gradient electric field as revealed by STM- TEM technique. Nano. Res. 2008, 1, 166-175.
Chang, C. W.; Fennimore, A. M.; Afanasiev, A.; Okawa, D.; Ikuno, T.; Garcia, H.; Li, D. Y.; Majumdar, A.; Zettl, A. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 2006, 97, 085901.
Gleize, P.; Schouler, M. C.; Gadelle, P.; Caillet, M. Growth of tubular boron nitride filaments. J. Mater. Sci. 1994, 29, 1575-1580.
Ma, R.; Bando, Y.; Sato, T. CVD synthesis of boron nitride nanotubes without metal catalysts. Chem. Phys. Lett. 2001, 337, 61-64.
Ma, R.; Bando, Y.; Sato, T.; Kurashima, K. Growth, morphology, and structure of boron nitride nanotubes. Chem. Mater. 2001, 13, 2965-2971.
Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv Mater. 2007, 19, 2413-2432.
Yu, D. P.; Sun, X. S.; Lee, C. S.; Bello, I.; Lee, S. T.; Gu, H. D.; Leung, K. M.; Zhou, G. W.; Dong, Z. F.; Zhang, Z. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 1998, 72, 1966-1968.
Laude, T.; Matsui, Y.; Marraud, A.; Jouffrey, B. Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 2000, 76, 3239-3241.
Chen, Y.; Gerald, J. F.; Williams, J. S.; Bulcock, S. Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 1999, 299, 260-264.
Fathalizadeh, A.; Pham, T.; Mickelson, W.; Zettl, A. Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended- pressure, inductively-coupled thermal plasma. Nano Lett. 2014, 14, 4881-4886.
Wang, J. L.; Zhang, L. P.; Zhao, G. W.; Gu, Y. L.; Zhang, Z. H.; Zhang, F.; Wang, W. M. Selective synthesis of boron nitride nanotubes by self-propagation high-temperature synthesis and annealing process. J. Solid State Chem. 2011, 184, 2478-2484.
Huang, Y.; Lin, J.; Tang, C. C.; Bando, Y.; Zhi, C. Y.; Zhai, T. Y.; Dierre, B.; Sekiguchi, T.; Golberg, D. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology 2011, 22, 145602.
Bartnitskaya, T. S.; Lyashenko, V. I.; Kurdyumov, A. V.; Ostrovskaya, N. F.; Rogovaya, I. G. Effect of lithium on structure formation of graphite-like boron nitride with carbothermal synthesis. Powder Metall. Metal Ceram. 1994, 33, 335-340.
Golberg, D.; Mitome, M.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Appl. Phys. A. 2007, 88, 347-352.
Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Boron nitride nanotubes. Mater. Sci. Engin. R 2010, 70, 92-111.
Wu, J.; Han, W. -Q.; Walukiewicz, W.; Ager Ⅲ, J. W.; Shan, W.; Haller, E. E.; Zettl, A. Raman spectroscopy and time- resolved photoluminescence of BN and BxCyNz nanotubes. Nano Lett. 2004, 4, 647-650.
Bae, S. Y.; Seo, H. W.; Park, J.; Choi, Y. S.; Park, J. C.; Lee, S. Y. Boron nitride nanotubes synthesized in the temperature range 1000-1200 ℃. Chem. Phys. Lett. 2003, 374, 534-541.
Lee, C. H.; Wang, J. S.; Kayatsha, V. K.; Huang J. Y.; Yap, Y. K. Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 2008, 19, 455605.
Kamitsos, E. I.; Patsis, A. P.; Karakassides, M. A.; Chryssikos, G. D. Infrared reflectance spectra of lithium borate glasses. J. Non-Crystall. Solids 1990, 126, 52-67.
Meera B. N.; Ramakrishna J. Raman spectral studies of borate glasses. J. Non-Crystall. Solids 1993, 159, 1-21.
Wakasugi, T.; Tsukihashi, F.; Sano N. Thermodynamics of nitrogen in B2O3, B2O3-SiO2, and B2O3-CaO systems. J. Am. Ceram. Soc. 1991, 74, 1650-1653.
Wakasugi, T.; Tsukihashi, F.; Sano, N. The solubilities of BN in B2O3 bearing melts. J. Non-Crystall. Solids 1991, 135, 139-145.
Çamurlu, H. E.; Sevinç, N.; Topkaya, Y. Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride. J. Eur. Ceram. Soc. 2008, 28, 679-689.
Çamurlu, H. E.; Topkaya, Y.; Sevinç, N. Catalytic effect of alkaline earth oxides on carbothermic formation of hexagonal boron nitride. Ceram. Int. 2009, 35, 2271-2275.
Çamurlu, H. E. Effect of Na2CO3 on hexagonal boron nitride prepared from urea and boric acid. Ceram. Int. 2011, 37, 1993-1999.
Bartnitskaya, T. S.; Kurdyumov, A. V.; Lyashenko, V. I.; Ostrovskaya, N. F. Structural-chemical aspects of the catalytic synthesis of graphite-like boron nitride. Powder Metall. Metal Ceram 1998, 37, 30-37.