Journal Home > Volume 8 , Issue 6

High-purity straight and discrete multiwalled boron nitride nanotubes (BNNTs) were grown via a boron oxide vapor reaction with ammonia using LiNO3 as a promoter. Only a trace amount of boron oxide was detected as an impurity in the BNNTs by energy-dispersive X-ray (EDX) and Raman spectroscopies. Boron oxide vapor was generated from a mixture of B, FeO, and MgO powders heated to 1, 150 ℃, and it was transported to the reaction zone by flowing ammonia. Lithium nitrate was applied to the upper side of a BN bar from a water solution. The bar was placed along a temperature gradient zone in a horizontal tubular furnace. BNNTs with average diameters of 30-50 nm were mostly observed in a temperature range of 1, 280-1, 320 ℃. At higher temperatures, curled polycrystalline BN fibers appeared. Above 1, 320 ℃, the number of BNNTs drastically decreased, whereas the quantity and diameter of the fibers increased. The mechanism of BNNT and fiber growth is proposed and discussed.


menu
Abstract
Full text
Outline
About this article

Boron nitride nanotube growth via boron oxide assisted chemical vapor transport-deposition process using LiNO3 as a promoter

Show Author's information Andrei T. Matveev1( )Konstantin L. Firestein1Alexander E. Steinman1Andrey M. Kovalskii1Oleg I. Lebedev2Dmitry V. Shtansky1( )Dmitri Golberg3( )
National University of Science and Technology "MISIS"Leninskiy prospect 4Moscow119049Russia
CRISMATUMR 6508CNRS-ENSICAEN6Bd Marechal JuinCaen14050France
Institute for Materials Science (NIMS)Namiki 1IbarakiTsukuba3050044Japan

Abstract

High-purity straight and discrete multiwalled boron nitride nanotubes (BNNTs) were grown via a boron oxide vapor reaction with ammonia using LiNO3 as a promoter. Only a trace amount of boron oxide was detected as an impurity in the BNNTs by energy-dispersive X-ray (EDX) and Raman spectroscopies. Boron oxide vapor was generated from a mixture of B, FeO, and MgO powders heated to 1, 150 ℃, and it was transported to the reaction zone by flowing ammonia. Lithium nitrate was applied to the upper side of a BN bar from a water solution. The bar was placed along a temperature gradient zone in a horizontal tubular furnace. BNNTs with average diameters of 30-50 nm were mostly observed in a temperature range of 1, 280-1, 320 ℃. At higher temperatures, curled polycrystalline BN fibers appeared. Above 1, 320 ℃, the number of BNNTs drastically decreased, whereas the quantity and diameter of the fibers increased. The mechanism of BNNT and fiber growth is proposed and discussed.

Keywords: CVD, boron nitride nanotubes, lithium nitrate, lithium borate, BNNT growth mechanism

References(31)

1

Chopra, N. G.; Luyken, R. J.; Cherrey, K; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Boron nitride nanotubes. Science 1995, 269, 966-967.

2

Wei, X. L.; Wang, M. S.; Bando, Y; Golberg, D. Tensile tests on individual multi-walled boron nitride nanotubes. Adv. Mater. 2010, 22, 4895-4899.

3

Chopra, N. G.; Zettl, A. Measurement of the elastic modulus of a multi-wall boron nitride nanotube. Solid State Commun. 1998, 105, 297-300.

4

Lee, C.; Wei, X. D.; Kysar J. W.; Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

5

Golberg, D.; Costa, P. M. F. J.; Mitome, M.; Bando, Y. Nanotubes in a gradient electric field as revealed by STM- TEM technique. Nano. Res. 2008, 1, 166-175.

6

Chang, C. W.; Fennimore, A. M.; Afanasiev, A.; Okawa, D.; Ikuno, T.; Garcia, H.; Li, D. Y.; Majumdar, A.; Zettl, A. Isotope effect on the thermal conductivity of boron nitride nanotubes. Phys. Rev. Lett. 2006, 97, 085901.

7

Gleize, P.; Schouler, M. C.; Gadelle, P.; Caillet, M. Growth of tubular boron nitride filaments. J. Mater. Sci. 1994, 29, 1575-1580.

8

Ma, R.; Bando, Y.; Sato, T. CVD synthesis of boron nitride nanotubes without metal catalysts. Chem. Phys. Lett. 2001, 337, 61-64.

9

Ma, R.; Bando, Y.; Sato, T.; Kurashima, K. Growth, morphology, and structure of boron nitride nanotubes. Chem. Mater. 2001, 13, 2965-2971.

10

Golberg, D.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Boron nitride nanotubes. Adv Mater. 2007, 19, 2413-2432.

11

Yu, D. P.; Sun, X. S.; Lee, C. S.; Bello, I.; Lee, S. T.; Gu, H. D.; Leung, K. M.; Zhou, G. W.; Dong, Z. F.; Zhang, Z. Synthesis of boron nitride nanotubes by means of excimer laser ablation at high temperature. Appl. Phys. Lett. 1998, 72, 1966-1968.

12

Laude, T.; Matsui, Y.; Marraud, A.; Jouffrey, B. Long ropes of boron nitride nanotubes grown by a continuous laser heating. Appl. Phys. Lett. 2000, 76, 3239-3241.

13

Chen, Y.; Gerald, J. F.; Williams, J. S.; Bulcock, S. Synthesis of boron nitride nanotubes at low temperatures using reactive ball milling. Chem. Phys. Lett. 1999, 299, 260-264.

14

Fathalizadeh, A.; Pham, T.; Mickelson, W.; Zettl, A. Scaled synthesis of boron nitride nanotubes, nanoribbons, and nanococoons using direct feedstock injection into an extended- pressure, inductively-coupled thermal plasma. Nano Lett. 2014, 14, 4881-4886.

15

Wang, J. L.; Zhang, L. P.; Zhao, G. W.; Gu, Y. L.; Zhang, Z. H.; Zhang, F.; Wang, W. M. Selective synthesis of boron nitride nanotubes by self-propagation high-temperature synthesis and annealing process. J. Solid State Chem. 2011, 184, 2478-2484.

16

Huang, Y.; Lin, J.; Tang, C. C.; Bando, Y.; Zhi, C. Y.; Zhai, T. Y.; Dierre, B.; Sekiguchi, T.; Golberg, D. Bulk synthesis, growth mechanism and properties of highly pure ultrafine boron nitride nanotubes with diameters of sub-10 nm. Nanotechnology 2011, 22, 145602.

17

Bartnitskaya, T. S.; Lyashenko, V. I.; Kurdyumov, A. V.; Ostrovskaya, N. F.; Rogovaya, I. G. Effect of lithium on structure formation of graphite-like boron nitride with carbothermal synthesis. Powder Metall. Metal Ceram. 1994, 33, 335-340.

18

Golberg, D.; Mitome, M.; Bando, Y.; Tang, C. C.; Zhi, C. Y. Multi-walled boron nitride nanotubes composed of diverse cross-section and helix type shells. Appl. Phys. A. 2007, 88, 347-352.

19

Zhi, C. Y.; Bando, Y.; Tang, C. C.; Golberg, D. Boron nitride nanotubes. Mater. Sci. Engin. R 2010, 70, 92-111.

20

Wu, J.; Han, W. -Q.; Walukiewicz, W.; Ager Ⅲ, J. W.; Shan, W.; Haller, E. E.; Zettl, A. Raman spectroscopy and time- resolved photoluminescence of BN and BxCyNz nanotubes. Nano Lett. 2004, 4, 647-650.

21

Bae, S. Y.; Seo, H. W.; Park, J.; Choi, Y. S.; Park, J. C.; Lee, S. Y. Boron nitride nanotubes synthesized in the temperature range 1000-1200 ℃. Chem. Phys. Lett. 2003, 374, 534-541.

22

Lee, C. H.; Wang, J. S.; Kayatsha, V. K.; Huang J. Y.; Yap, Y. K. Effective growth of boron nitride nanotubes by thermal chemical vapor deposition. Nanotechnology 2008, 19, 455605.

23
Spriggs, G. E. Properties of diamond and cubic boron nitride. In Powder Metallurgy Data. Refractory, Hard and Intermetallic Materials. Beiss, P.; Ruthardt, R.; Warlimont, H., eds.; Springer: Berlin Heidelberg, 2002; pp 118-139.https://doi.org/10.1007/10858641_7
DOI
24

Kamitsos, E. I.; Patsis, A. P.; Karakassides, M. A.; Chryssikos, G. D. Infrared reflectance spectra of lithium borate glasses. J. Non-Crystall. Solids 1990, 126, 52-67.

25

Meera B. N.; Ramakrishna J. Raman spectral studies of borate glasses. J. Non-Crystall. Solids 1993, 159, 1-21.

26

Wakasugi, T.; Tsukihashi, F.; Sano N. Thermodynamics of nitrogen in B2O3, B2O3-SiO2, and B2O3-CaO systems. J. Am. Ceram. Soc. 1991, 74, 1650-1653.

27

Wakasugi, T.; Tsukihashi, F.; Sano, N. The solubilities of BN in B2O3 bearing melts. J. Non-Crystall. Solids 1991, 135, 139-145.

28

Çamurlu, H. E.; Sevinç, N.; Topkaya, Y. Effect of calcium carbonate addition on carbothermic formation of hexagonal boron nitride. J. Eur. Ceram. Soc. 2008, 28, 679-689.

29

Çamurlu, H. E.; Topkaya, Y.; Sevinç, N. Catalytic effect of alkaline earth oxides on carbothermic formation of hexagonal boron nitride. Ceram. Int. 2009, 35, 2271-2275.

30

Çamurlu, H. E. Effect of Na2CO3 on hexagonal boron nitride prepared from urea and boric acid. Ceram. Int. 2011, 37, 1993-1999.

31

Bartnitskaya, T. S.; Kurdyumov, A. V.; Lyashenko, V. I.; Ostrovskaya, N. F. Structural-chemical aspects of the catalytic synthesis of graphite-like boron nitride. Powder Metall. Metal Ceram 1998, 37, 30-37.

Publication history
Copyright
Acknowledgements

Publication history

Received: 25 September 2014
Revised: 03 December 2014
Accepted: 07 January 2015
Published: 08 April 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The work was supported by the Ministry of Education and Science of the Russian Federation (MES RF) (Increase Competitiveness Program of NUST "MISiS" No. K2-2015-001 in the frame of "Mega-Grant" award No. 11.G34.31.0061) in the part of CVD synthesis of BN structures. O. I. L. gratefully acknowledges the financial support of the MES RF in the framework of Increase Competitiveness Program of NUST (MISiS) (No. К3-2014-021) in the part of samples characterization using TEM and HRTEM. A. T. M and A. M. K. particular acknowledge the financial support from the MES RF (State task 11.1077.2014/K).

Return