AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles

Morteza Hasanzadeh Kafshgari1,§Bahman Delalat1,§Wing Yin Tong1Frances J. Harding1Martti Kaasalainen2Jarno Salonen2Nicolas H. Voelcker1( )
ARC Centre of Excellence in Convergent Bio-Nano Science and TechnologyMawson InstituteUniversity of South AustraliaGPO Box 2471AdelaideSA5001Australia
Department of Physics and AstronomyUniversity of TurkuFI-20014Turku, Finland

§These authors contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Porous silicon nanoparticles (pSiNPs) are a promising nanocarrier system for drug delivery owing to their biocompatibility, biodegradability, and non-inflammatory nature. Here, we investigate the fabrication and characterization of thermally hydrocarbonized pSiNPs (THCpSiNPs) and chitosan-coated THCpSiNPs for therapeutic oligonucleotide delivery. Chitosan coating after oligonucleotide loading significantly improves sustained oligonucleotide release and suppresses burst release effects. Moreover, cellular uptake, endocytosis, and cytotoxicity of oligonucleotide-loaded THCpSiNPs have been evaluated in vitro. Standard cell viability assays demonstrate that cells incubated with the NPs at a concentration of 0.1 mg/mL are 95% viable. In addition, chitosan coating significantly enhances the uptake of oligonucleotide-loaded THCpSiNPs across the cell membrane. Moreover, histopathological analysis of liver, kidney, spleen, and skin tissue collected from mice receiving NPs further demonstrates the biocompatible and non-inflammatory properties of the NPs as a gene delivery vehicle for intravenous and subcutaneous administration in vivo. Taken together, these results suggest that THCpSiNPs provide a versatile platform that could be used as efficient vehicles for the intracellular delivery of oligonucleotides for gene therapy.

Electronic Supplementary Material

Download File(s)
12274_2015_715_MOESM1_ESM.pdf (4.3 MB)

References

1

Patil, S. D.; Rhodes, D. G.; Burgess, D. J. DNA-based therapeutics and DNA delivery systems: A comprehensive review. AAPS J. 2005, 7, E61-E77.

2

Helleday, T.; Petermann, E.; Lundin, C.; Hodgson, B.; Sharma, R. A. DNA repair pathways as targets for cancer therapy. Nat. Rev. Cancer 2008, 8, 193-204.

3

Blechinger, J.; Bauer, A. T.; Torrano, A. A.; Gorzelanny, C.; Bräuchle, C.; Schneider, S. W. Uptake kinetics and nanotoxicity of silica nanoparticles are cell type dependent. Small 2013, 9, 3970-3980.

4

Pendergrast, P. S.; Marsh, H. N.; Grate, D.; Healy, J. M.; Stanton, M. Nucleic acid aptamers for target validation and therapeutic applications. J. Biomol. Tech. 2005, 16, 224-234.

5

Niidome, T.; Huang, L. Gene therapy progress and prospects: Nonviral vectors. Gene Ther. 2002, 9, 1647-1652.

6

Herweijer, H.; Wolff, J. A. Progress and prospects: Naked DNA gene transfer and therapy. Gene Ther. 2003, 10, 453-458.

7

El-Aneed, A. An overview of current delivery systems in cancer gene therapy. J. Control. Release 2004, 94, 1-14.

8

Wong, S. Y.; Pelet, J. M.; Putnam, D. Polymer systems for gene delivery—Past, present, and future. Prog. Polym. Sci. 2007, 32, 799-837.

9

Thomas, C. E.; Ehrhardt, A.; Kay, M. A. Progress and problems with the use of viral vectors for gene therapy. Nat. Rev. Genet. 2003, 4, 346-358.

10

Marshall, E. Gene therapy death prompts review of adenovirus vector. Science 1999, 286, 2244-2245.

11

Cross, D.; Burmester, J. K. Gene therapy for cancer treatment: Past, present and future. Clin. Med. Res. 2006, 4, 218-227.

12

Ogris, M.; Wagner, E. Targeting tumors with non-viral gene delivery systems. Drug Discov. Today 2002, 7, 479-485.

13

Son, S.; Namgung, R.; Kim, J.; Singha, K.; Kim, W. J. Bioreducible polymers for gene silencing and delivery. Acc. Chem. Res. 2012, 45, 1100-1112.

14

Saranya, N.; Moorthi, A.; Saravanan, S.; Devi, M. P.; Selvamurugan, N. Chitosan and its derivatives for gene delivery. Int. J. Biol. Macromol. 2011, 48, 234-238.

15

Dass, C. R.; Choong, P. F. M. Selective gene delivery for cancer therapy using cationic liposomes: In vivo proof of applicability. J. Control. Release 2006, 113, 155-163.

16

Anglin, E. J.; Cheng, L. Y.; Freeman, W. R.; Sailor, M. J. Porous silicon in drug delivery devices and materials. Adv. Drug Deliv. Rev. 2008, 60, 1266-1277.

17

Pastor, E.; Matveeva, E.; Valle-Gallego, A.; Goycoolea, F. M.; Garcia-Fuentes, M. Protein delivery based on uncoated and chitosan-coated mesoporous silicon microparticles. Colloids Surf. B 2011, 88, 601-609.

18

Simion, M.; Ruta, L.; Mihailescu, C.; Kleps, I.; Bragaru, A.; Miu, M.; Ignat, T.; Baciu, I. Porous silicon used as support for protein microarray. Superlattices Microstruct. 2009, 46, 69-76.

19

Vale, N.; Mäkilä, E.; Salonen, J.; Gomes, P.; Hirvonen, J.; Santos, H. A. New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. Eur. J. Pharm. Biopharm. 2012, 81, 314-323.

20

DeLouise, L. A.; Miller, B. L. Quantatitive assessment of enzyme immobilization capacity in porous silicon. Anal. Chem. 2004, 76, 6915-6920.

21

Kafshgari, M. H.; Cavallaro, A.; Delalat, B.; Harding, F. J.; McInnes, S. J. P.; Mäkilä, E.; Salonen, J.; Vasilev, K.; Voelcker, N. H. Nitric oxide-releasing porous silicon nanoparticles. Nanoscale Res. Lett. 2014, 9, 333.

22

Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. D. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009, 9, 3550-3554.

23

Jarvis, K. L.; Barnes, T. J.; Prestidge, C. A. Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv. Colloid Interface Sci. 2012, 175, 25-38.

24

Wu, E. C.; Andrew, J. S.; Cheng, L. Y.; Freeman, W. R.; Pearson, L.; Sailor, M. J. Real-time monitoring of sustained drug release using the optical properties of porous silicon photonic crystal particles. Biomaterials 2011, 32, 1957-1966.

25

Tanaka, T.; Mangala, L. S.; Vivas-Mejia, P. E.; Nieves- Alicea, R.; Mann, A. P.; Mora, E.; Han, H. D.; Shahzad, M. M. K.; Liu, X. W.; Bhavane, R. et al. Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res. 2010, 70, 3687-3696.

26

Canham, L. T. Properties of Porous Silicon. The Institution of Electrical Engineers: London, 1997.

27

Low, S. P.; Williams, K. A.; Canham, L. T.; Voelcker, N. H. Evaluation of mammalian cell adhesion on surface-modified porous silicon. Biomaterials 2006, 27, 4538-4546.

28

McInnes, S. J. P.; Voelcker, N. H. Silicon-polymer hybrid materials for drug delivery. Future Med. Chem. 2009, 1, 1051-1074.

29

Bimbo, L. M.; Sarparanta, M.; Santos, H. A.; Airaksinen, A. J.; Mäkilä, E.; Laaksonen, T.; Peltonen, L.; Lehto, V. P.; Hirvonen, J.; Salonen, J. Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 2010, 4, 3023-3032.

30

Sarparanta, M.; Bimbo, L. M.; Rytkönen, J.; Mäkilä, E.; Laaksonen, T. J.; Laaksonen, P.; Nyman, M.; Salonen, J.; Linder, M. B.; Hirvonen, J. et al. Intravenous delivery of hydrophobin-functionalized porous silicon nanoparticles: Stability, plasma protein adsorption and biodistribution. Mol. Pharmaceutics 2012, 9, 654-663.

31

Jalkanen, T.; Mäkilä, E.; Sakka, T.; Salonen, J.; Ogata, Y. H. Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Res. Lett. 2012, 7, 311.

32

Jiang, X.; Chen, L. R.; Zhong, W. A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydr. Polym. 2003, 54, 457-463.

33

Liu, D. F.; Bimbo, L. M.; Mäkilä, E.; Villanova, F.; Kaasalainen, M.; Herranz-Blanco, B.; Caramella, C. M.; Lehto, V. P.; Salonen, J.; Herzig, K. H. et al. Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. J. Control. Release 2013, 170, 268-278.

34

Kovalainen, M.; Mönkäre, J.; Kaasalainen, M.; Riikonen, J.; Lehto, V. P.; Salonen, J.; Herzig, K. H.; Järvinen, K. Development of porous silicon nanocarriers for parenteral peptide delivery. Mol. Pharmaceutics 2013, 10, 353-359.

35

Soppimath, K. S.; Aminabhavi, T. M.; Kulkarni, A. R.; Rudzinski, W. E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001, 70, 1-20.

36

Li, X.; Xie, Q. R.; Zhang, J. X.; Xia, W. L.; Gu, H. C. The packaging of siRNA within the mesoporous structure of silica nanoparticles. Biomaterials 2011, 32, 9546-9556.

37

Jayakumar, R.; Chennazhi, K. P.; Muzzarelli, R. A. A.; Tamura, H.; Nair, S. V.; Selvamurugan, N. Chitosan conjugated DNA nanoparticles in gene therapy. Carbohydr. Polym. 2010, 79, 1-8.

38

Kafshgari, M. H.; Harding, F. J.; Voelcker, N. H. Insights into cellular uptake of nanoparticles. Curr. Drug Deliv. 2014, 12, 63-77.

39

Katas, H.; Alpar, H. O. Development and characterisation of chitosan nanoparticles for siRNA delivery. J. Control. Release 2006, 115, 216-225.

40

Mao, S. R.; Sun, W.; Kissel, T. Chitosan-based formulations for delivery of DNA and siRNA. Adv. Drug Deliv. Rev. 2010, 62, 12-27.

41

Wu, J. M.; Sailor, M. J. Chitosan hydrogel-capped porous SiO2 as a pH responsive nano-valve for triggered release of insulin. Adv. Funct. Mater. 2009, 19, 733-741.

42

Kaasalainen, M.; Mäkilä, E.; Riikonen, J.; Kovalainen, M.; Järvinen, K.; Herzig, K. H.; Lehto, V. P.; Salonen, J. Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. Int. J. Pharm. 2012, 431, 230-236.

43

Henry, D. C. The cataphoresis of suspended particles. Part Ⅰ. —The equation of cataphoresis. Proc. R. Soc. London A-Math. Phys. Sci. 1931, 133, 106-129.

44

Jiang, X.; Chen, L.; Zhong, W. A new linear potentiometric titration method for the determination of deacetylation degree of chitosan. Carbohydr. Polym. 2003, 54, 457-463.

45

Kafshgari, M. H.; Mansouri, M.; Khorram, M.; Samimi, A.; Osfouri, S. Bovine serum albumin-loaded chitosan particles: An evaluation of effective parameters on fabrication, characteristics, and in vitro release in the presence of non- covalent interactions. Int. J. Polym. Mater. Polym. Biomater. 2012, 61, 1079-1090.

46

Fadeel, B.; Garcia-Bennett, A. E. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv. Drug Deliv. Rev. 2010, 62, 362-374.

47

Santos, H. A.; Riikonen, J.; Salonen, J.; Mäkilä, E.; Heikkilä, T.; Laaksonen, T.; Peltonen, L.; Lehto, V. P.; Hirvonen, J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010, 6, 2721-2731.

48

Pollak, R. D.; Rosenkranz, H. S. Metabolic effects of hydroxyurea on BHK-21 cells transformed with polyoma virus. Cancer Res. 1967, 27, 1214-1224.

49

Wang, Z. Y.; Li, N.; Zhao, J.; White, J. C.; Qu, P.; Xing, B. S. CuO nanoparticle interaction with human epithelial cells: Cellular uptake, location, export, and genotoxicity. Chem. Res. Toxicol. 2012, 25, 1512-1521.

50

Vasu, S. K.; Forbes, D. J. Nuclear pores and nuclear assembly. Curr. Opin. Cell Biol. 2001, 13, 363-375.

51

Shahbazi, M. A.; Hamidi, M.; Mäkilä, E. M.; Zhang, H. B.; Almeida, P. V.; Kaasalainen, M.; Salonen, J. J.; Hirvonen, J. T.; Santos, H. A. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 2013, 34, 7776-7789.

52

Zhu, M.; Zhu, Y. F.; Zhang, L. X.; Shi, J. L. Preparation of chitosan/mesoporous silica nanoparticle composite hydrogels for sustained co-delivery of biomacromolecules and small chemical drugs. Sci. Technol. Adv. Mater. 2013, 14, 045005.

53

Park, J. H.; Gu, L.; von Maltzahn, G.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 2009, 8, 331-336.

Nano Research
Pages 2033-2046
Cite this article:
Kafshgari MH, Delalat B, Tong WY, et al. Oligonucleotide delivery by chitosan-functionalized porous silicon nanoparticles. Nano Research, 2015, 8(6): 2033-2046. https://doi.org/10.1007/s12274-015-0715-0

693

Views

32

Crossref

N/A

Web of Science

35

Scopus

0

CSCD

Altmetrics

Received: 03 August 2014
Revised: 07 January 2015
Accepted: 07 January 2015
Published: 22 April 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return