Journal Home > Volume 8 , Issue 6

The nanomechanical properties of single human immunoglobulin G and M antibodies were measured in a liquid environment using a fast force-volume technique with sub-10-nm spatial resolution. The ultrastructural details of these molecules were resolved in the images. Simultaneously, important physical properties, including elasticity, adhesion, and deformation were measured. The dimensions and adsorption of the immunoglobulin M antibodies onto the substrate indicated that they are highly flexible. The antibodies were characterized by a low elastic stiffness (34 ± 10 MPa) and high deformability (1.5 ± 0.5 nm).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Quantitative measurement of the mechanical properties of human antibodies with sub-10-nm resolution in a liquid environment

Show Author's information Agnieszka Voss1,2Christian Dietz1,2( )Annika Stocker1,2Robert W. Stark1,2( )
Center of Smart InterfacesTechnische Universität Darmstadt, Alarich-Weiss-Str. 1064287DarmstadtGermany
Physics of SurfacesInstitute of Materials ScienceTechnische Universität Darmstadt, Alarich-Weiss-Str. 1664287DarmstadtGermany

Abstract

The nanomechanical properties of single human immunoglobulin G and M antibodies were measured in a liquid environment using a fast force-volume technique with sub-10-nm spatial resolution. The ultrastructural details of these molecules were resolved in the images. Simultaneously, important physical properties, including elasticity, adhesion, and deformation were measured. The dimensions and adsorption of the immunoglobulin M antibodies onto the substrate indicated that they are highly flexible. The antibodies were characterized by a low elastic stiffness (34 ± 10 MPa) and high deformability (1.5 ± 0.5 nm).

Keywords: atomic force microscopy, flexibility, immunoglobulin, structure and physical properties, piconewton forces, antibodies

References(58)

1

Mammen, M.; Choi, S. K.; Whitesides, G. M. Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, 2754-2794.

DOI
2

Saphire, E. O.; Stanfield, R. L.; Crispin, M. D. M.; Parren, P.; Rudd, P. M.; Dwek, R. A.; Burton, D. R.; Wilson, I. A. Contrasting IgG structures reveal extreme asymmetry and flexibility. J. Mol. Biol. 2002, 319, 9-18.

3

Sandin, S.; Öfverstedt, L. G.; Wikström, A. C.; Wrange, Ö.; Skoglund, U. Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 2004, 12, 409-415.

4

Szenczi, A.; Kardos, J.; Medgyesi, G. A.; Zavodszky, P. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals 2006, 34, 5-14.

5

Ando, T.; Kodera, N.; Takai, E.; Maruyama, D.; Saito, K.; Toda, A. A high-speed atomic force microscope for studying biological macromolecules. P. Natl. Acad. Sci. USA 2001, 98, 12468-12472.

6

Engel, A.; Muller, D. J. Observing single biomolecules at work with the atomic force microscope. Nat. Struct. Biol. 2000, 7, 715-718.

7

Higgins, M. J.; Polcik, M.; Fukuma, T.; Sader, J. E.; Nakayama, Y.; Jarvis, S. P. Structured water layers adjacent to biological membranes. Biophys. J. 2006, 91, 2532-2542.

8

Muller, D. J.; Sapra, K. T.; Scheuring, S.; Kedrov, A.; Frederix, P. L.; Fotiadis, D.; Engel, A. Single-molecule studies of membrane proteins. Curr. Opin. Struc. Biol. 2006, 16, 489-495.

9

Picas, L.; Rico, F.; Scheuring, S. Direct measurement of the mechanical properties of lipid phases in supported bilayers. Biophys. J. 2012, 102, L1-L3.

10

Rief, M.; Gautel, M.; Oesterhelt, F.; Fernandez, J. M.; Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 1997, 276, 1109-1112.

11

Scheuring, S.; Rigaud, J. L.; Sturgis, J. N. Variable LH2 stoichiometry and core clustering in native membranes of Rhodospirillum photometricum. Embo J. 2004, 23, 4127-4133.

12

Scheuring, S.; Seguin, J.; Marco, S.; Levy, D.; Robert, B.; Rigaud, J. L. Nanodissection and high-resolution imaging of the Rhodopseudomonas viridis photosynthetic core complex in native membranes by AFM. P. Natl. Acad. Sci. USA 2003, 100, 1690-1693.

13

Yokokawa, M.; Wada, C.; Ando, T.; Sakai, N.; Yagi, A.; Yoshimura, S. H.; Takeyasu, K. Fast-scanning atomic force microscopy reveals the ATP/ADP-dependent conformational changes of GroEL. Embo J. 2006, 25, 4567-4576.

14

Dong, M.; Sahin, O. A nanomechanical interface to rapid single-molecule interactions. Nat. Commun. 2011, 2, 247.

15

Ido, S.; Kimiya, H.; Kobayashi, K.; Kominami, H.; Matsushige, K.; Yamada, H. Immunoactive two-dimensional self-assembly of monoclonal antibodies in aqueous solution revealed by atomic force microscopy. Nat. Mater. 2014, 13, 264-270.

16

Ebeling, D.; Solares, S. D. Amplitude modulation dynamic force microscopy imaging in liquids with atomic resolution: Comparison of phase contrasts in single and dual mode operation. Nanotechnology 2013, 24, 135702.

17

Melcher, J.; Carrasco, C.; Xu, X.; Carrascosa, J. L.; Gomez-Herrero, J.; Jose de Pablo, P.; Raman, A. Origins of phase contrast in the atomic force microscope in liquids. P. Natl. Acad. Sci. USA 2009, 106, 13655-13660.

18

Fukuma, T.; Ueda, Y.; Yoshioka, S.; Asakawa, H. Atomic-scale distribution of water molecules at the mica-water interface visualized by three-dimensional scanning force microscopy. Phys. Rev. Lett. 2010, 104, 016101.

19

Dufrene, Y. F.; Martinez-Martin, D.; Medalsy, I.; Alsteens, D.; Mueller, D. J. Multiparametric imaging of biological systems by force-distance curve-based AFM. Nat. Methods 2013, 10, 847-854.

20

Pittenger, B.; Erina, N.; Chanmin, S. Quantitative mechanical mapping at nanoscale with peak force QNM. In Bruker Application Note #128, 2009.

21

Feinstein, A.; Richardson, N.; Taussig, M. I. Immunoglobulin flexibility in complement activation. Immunol. Today 1986, 7, 169-174.

22

Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Mol. Biol. Cell; Garland Science: New York, 2007.

23

Perkins, S. J.; Nealis, A. S.; Sutton, B. J.; Feinstein, A. Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling: A possible mechanism for complement activation. J. Mol. Biol. 1991, 221, 1345-1366.

24

Cattaneo, A.; Neuberger, M. S. Polymeric immunoglobulin M is secreted by transfectants of non-lymphoid cells in the absence of immunoglobulin J chain. Embo J. 1987, 6, 2753-2758.

25

Niles, M. J.; Matsuuchi, L.; Koshland, M. E. Polymer IgM assembly and secretion in lymphoid and nonlymphoid cell lines: Evidence that J chain is required for pentamer IgM synthesis. Proc. Natl. Acad. Sci. 1995, 92, 2884-2888.

26

Randall, T. D.; Brewer, J. W.; Corley, R. B. Direct evidence that J chain regulates the polymeric structure of IgM in antibody-secreting B cells. J. Biol. Chem. 1992, 267, 18002-18007.

27

Wiersma, E. J.; Collins, C.; Fazel, S.; Shulman, M. J. Structural and functional analysis of J chain-deficient IgM. J. Immunol. 1998, 160, 5979-5989.

28

Hendrickson, B. A.; Conner, D. A.; Ladd, D. J.; Kendall, D.; Casanova, J. E.; Corthesy, B.; Max, E. E.; Neutra, M. R.; Seidman, C. E.; Seidman, J. G. Altered hepatic transport of immunoglobulin A in mice lacking the J chain. J. Exp. Med. 1995, 182, 1905-1911.

29

Sandin, S.; Ofverstedt, L. G.; Wikstrom, A. C.; Wrange, O.; Skoglund, U. Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 2004, 12, 409-415.

30

Pumphrey, R. Computer-models of the human-immunoglobulins-shape and segmental flexibility. Immunol. Today 1986, 7, 174-178.

31

Czajkowsky, D. M.; Shao, Z. The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. P. Natl. Acad. Sci. USA 2009, 106, 14960-14965.

32

Hafner, J. H.; Cheung, C. L.; Lieber, C. M. Growth of nanotubes for probe microscopy tips. Nature 1999, 398, 761-762.

33

Hinterdorfer, P.; Dufrene, Y. F. Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 2006, 3, 347-355.

34

Makky, A.; Berthelot, T.; Feraudet-Tarisse, C.; Volland, H.; Viel, P.; Polesel-Maris, J. Substructures high resolution imaging of individual IgG and IgM antibodies with piezoelectric tuning fork atomic force microscopy. Sens. Act. B 2012, 162, 269-277.

35

Martinez, N. F.; Lozano, J. R.; Herruzo, E. T.; Garcia, F.; Richter, C.; Sulzbach, T.; Garcia, R. Bimodal atomic force microscopy imaging of isolated antibodies in air and liquids. Nanotechnology 2008, 19, 384011.

36

Martinez-Martin, D.; Herruzo, E. T.; Dietz, C.; Gomez-Herrero, J.; Garcia, R. Noninvasive protein structural flexibility mapping by bimodal dynamic force microscopy. Phys. Rev. Lett. 2011, 106, 198101.

37

Patil, S.; Martinez, N. F.; Lozano, J. R.; Garcia, R. Force microscopy imaging of individual protein molecules with sub-pico Newton force sensitivity. J. Mol. Recognit. 2007, 20, 516-523.

38

Roberts, C. J.; Davies, M. C.; Tendler, S. J. B.; Williams, P. M.; Davies, J.; Dawkes, A. C.; Yearwood, G. D. L.; Edwards, J. C. The discrimination of IgM and IgG type antibodies and Fab' and F(ab)(2) antibody fragments on an industrial substrate using scanning force microscopy. Ultramicroscopy 1996, 62, 149-155.

39

San Paulo, A.; García, R. High-resolution imaging of antibodies by tapping-mode atomic force microscopy: Attractive and repulsive tip-sample interaction regimes. Biophys. J. 2000, 78, 1599-1605.

40

Thomson, N. H. The substructure of immunoglobulin G resolved to 25 Da using amplitude modulation AFM in air. Ultramicroscopy 2005, 105, 103-110.

41

Zhang, Y.; Sheng, S.; Shao, Z. Imaging biological structures with the cryo atomic force microscope. Biophys. J. 1996, 71, 2168-2176.

42

Kienberger, F.; Mueller, H.; Pastushenko, V.; Hinterdorfer, P. Following single antibody binding to purple membranes in real time. Embo Rep. 2004, 5, 579-583.

43

Szenczi, Á.; Kardos, J.; Medgyesi, G. A.; Závodszky, P. The effect of solvent environment on the conformation and stability of human polyclonal IgG in solution. Biologicals 2006, 34, 5-14.

44

RosaZeiser, A.; Weilandt, E.; Hild, S.; Marti, O. The simultaneous measurement of elastic, electrostatic and adhesive properties by scanning force microscopy: Pulsed-force mode operation. Meas. Sci. Technol. 1997, 8, 1333-1338.

45

Derjaguin, B. V.; Muller, V. M.; Toporov, Y. P. Effect of contact deformations on the adhesion of particles. J. Colloid. Interf. Sci. 1975, 53, 314-326.

46

Voss, A.; Stark, R. W.; Dietz, C. Surface versus volume properties on the nanoscale: Elastomeric polypropylene. Macromolecules 2014, 47, 5236-5245.

47

Butt, H. J.; Jaschke, M. Calculation of thermal noise in atomic force microscopy. Nanotechnology 1995, 6, 1-7.

48
NanoScope Software User Guide.
49

Chiodi, F.; Sidén, Å.; Ösby, E. Isoelectric focusing of monoclonal immunoglobulin G, A and M followed by detection with the avidin-biotin system. Electrophoresis 1985, 6, 124-128.

50

Hansma, H. G.; Laney, D. E. DNA binding to mica correlates with cationic radius: Assay by atomic force microscopy. Biophys. J. 1996, 70, 1933-1939.

51

Pastre, D.; Pietrement, O.; Fusil, P.; Landousy, F.; Jeusset, J.; David, M. O.; Hamon, C.; Le Cam, E.; Zozime, A. Adsorption of DNA to mica mediated by divalent counterions: A theoretical and experimental study. Biophys. J. 2003, 85, 2507-2518.

52

Munn, E. A.; Bachmann, L.; Feinstein, A. Structure of hydrated immunoglobulins and antigen-antibody complexes-electron-microscopy of spray-freeze-etched specimens. Biochim. Biophys. Acta 1980, 625, 1-9.

53

Knoll, A.; Magerle, R.; Krausch, G. Tapping mode atomic force microscopy on polymers: Where is the true sample surface? Macromolecules 2001, 34, 4159-4165.

54

Villarrubia, J. S. Algorithms for scanned probe microscope image simulation, surface reconstruction, and tip estimation. J. Res. Natl. Inst. Stan. 1997, 102, 425-454.

55

Dimitriadis, E. K.; Horkay, F.; Maresca, J.; Kachar, B.; Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 2002, 82, 2798-2810.

56

Domke, J.; Radmacher, M. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 1998, 14, 3320-3325.

57

Volpatti, L. R.; Knowles, T. P. J. Polymer physics inspired approaches for the study of the mechanical properties of amyloid fibrils. J. Polymer Sci. B 2014, 52, 281-292.

58

Christenson, H. K. Adhesion and surface-energy of mica in air and water. J. Phys. Chem 1993, 97, 12034-12041.

File
12274_2015_710_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 October 2014
Revised: 28 December 2014
Accepted: 29 December 2014
Published: 08 April 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

The authors thank the Center of Smart Interface for financial support.

Return