AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Optical super-resolution microscopy and its applications in nano-catalysis

Wenhui Wang1,2Junnan Gu2Ting He2Yangbin Shen2Shaobo Xi2Lei Tian2Feifei Li2Haoyuan Li2Liuming Yan1Xiaochun Zhou2( )
Department of ChemistryCollege of SciencesShanghai University99 Shangda RoadShanghai200444China
Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhou215123China
Show Author Information

Graphical Abstract

Abstract

The resolution of conventional optical microscopy is only ~200 nm, which is becoming less and less sufficient for a variety of applications. In order to surpass the diffraction limited resolution, super-resolution microscopy (SRM) has been developed to achieve a high resolution of one to tens of nanometers. The techniques involved in SRM can be assigned into two broad categories, namely "true" super-resolution techniques and "functional" super-resolution techniques. In "functional" super-resolution techniques, stochastic super-resolution microscopy (SSRM) is widely used due to its low expense, simple operation, and high resolution. The principle process in SSRM is to accumulate the coordinates of many diffraction-limited emitters (e.g., single fluorescent molecules) on the object by localizing the centroids of the point spread functions (PSF), and then reconstruct the image of the object using these coordinates. When the diffraction-limited emitters take part in a catalytic reaction, the activity distribution and kinetic information about the catalysis by nanoparticles can be obtained by SSRM. SSRM has been applied and exhibited outstanding advantages in several fields of catalysis, such as metal nanoparticle catalysis, molecular sieve catalysis, and photocatalysis. Since SSRM is able to resolve the catalytic activity within one nanoparticle, it promises to accelerate the development and discovery of new and better catalysts. This review will present a brief introduction to SRM, and a detailed description of SSRM and its applications in nano-catalysis.

References

1

Pohl, D. W.; Denk, W.; Lanz, M. Optical stethoscopy-image recording with resolution lambda/20. Appl. Phys. Lett. 1984, 44, 651-653.

2

Cremer, C.; Cremer, T. Considerations on a laser-scanning- microscope with high-resolution and depth of field. Microscopica Acta 1978, 81, 31-44.

3

Bailey, B.; Farkas, D. L.; Taylor, D. L.; Lanni, F. Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation. Nature 1993, 366, 44-48.

4

Reymann, J.; Baddeley, D.; Gunkel, M.; Lemmer, P.; Stadter, W.; Jegou, T.; Rippe, K.; Cremer, C.; Birk, U. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome Res. 2008, 16, 367-382.

5

Hell, S. W. Toward fluorescence nanoscopy. Nat. Biotechnol. 2003, 21, 1347-1355.

6

Hell, S. W.; Kroug, M. Ground-state-depletion fluorescence microscopy—A concept for breaking the diffraction resolution limit. Appl. Phys. B-Lasers Opt. 1995, 60, 495-497.

7

Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: Wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl. Acad. Sci. USA 2005, 102, 13081-13086.

8

Yildiz, A.; Forkey, J. N.; McKinney, S. A.; Ha, T.; Goldman, Y. E.; Selvin, P. R. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 2003, 300, 2061-2065.

9

Yildiz, A.; Selvin, P. R. Fluorescence imaging with one manometer accuracy: Application to molecular motors. Acc. Chem. Res. 2005, 38, 574-582.

10

Park, H.; Toprak, E.; Selvin, P. R. Single-molecule fluorescence to study molecular motors. Q. Rev. Biophys. 2007, 40, 87-111.

11

Hell, S. W.; Jakobs, S.; Kastrup, L. Imaging and writing at the nanoscale with focused visible light through saturable optical transitions. Appl. Phys. A-Mater. Sci. Process. 2003, 77, 859-860.

12

Qu, X. H.; Wu, D.; Mets, L.; Scherer, N. F. Nanometer- localized multiple single-molecule fluorescence microscopy. Proc. Natl. Acad. Sci. USA 2004, 101, 11298-11303.

13

Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott- Schwartz, J.; Hess, H. F. Imaging intracellular fluorescent proteins at nanometer resolution. Science 2006, 313, 1642- 1645.

14

Gould, T. J.; Gunewardene, M. S.; Gudheti, M. V.; Verkhusha, V. V.; Yin, S. R.; Gosse, J. A.; Hess, S. T. Nanoscale imaging of molecular positions and anisotropies. Nat. Methods 2008, 5, 1027-1030.

15

Rust, M. J.; Bates, M.; Zhuang, X. W. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 2006, 3, 793-796.

16

Huang, B.; Jones, S. A.; Brandenburg, B.; Zhuang, X. W. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 2008, 5, 1047-1052.

17

Van de Linde, S.; Loschberger, A.; Klein, T.; Heidbreder, M.; Wolter, S.; Heilemann, M.; Sauer, M. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protocols 2011, 6, 991-1009.

18

Huang, B.; Wang, W. Q.; Bates, M.; Zhuang, X. W. Three- dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 2008, 319, 810-813.

19

Lakadamyali, M.; Babcock, H.; Bates, M.; Zhuang, X. W.; Lichtman, J. 3D multicolor super-resolution imaging offers improved accuracy in neuron tracing. Plos One 2012, 7, e30826.

20

Olivier, N.; Keller, D.; Goenczy, P.; Manley, S. Resolution doubling in 3D-STORM imaging through improved buffers. Plos One 2013, 8, e69004.

21

Jones, S. A.; Shim, S. H.; He, J.; Zhuang, X. W. Fast, three- dimensional super-resolution imaging of live cells. Nat. Methods 2011, 8, 499-505.

22

Thompson, R. E.; Larson, D. R.; Webb, W. W. Precise nanometer localization analysis for individual fluorescent probes. Biophys. J. 2002, 82, 2775-2783.

23

Zhou, X.; Andoy, N. M.; Liu, G.; Choudhary, E.; Han, K. S.; Shen, H.; Chen, P. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 2012, 7, 237-241.

24

Metin, Ö.; Ho, S.; Alp, C.; Can, H.; Mankin, M.; Gültekin, M.; Chi, M.; Sun, S. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10-18.

25

Zhang, Q.; Guo, X.; Liang, Z.; Zeng, J.; Yang, J.; Liao, S. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571-580.

26

Zheng, F.; Wong, W. T.; Yung, K. F. Facile design of Au@Pt core-shell nanostructures: Formation of Pt submonolayers with tunable coverage and their applications in electrocatalysis. Nano Res. 2014, 7, 410-417.

27

Li, H.; Wang, J.; Liu, M.; Wang, H.; Su, P.; Wu, J.; Li, J. A nanoporous oxide interlayer makes a better Pt catalyst on a metallic substrate: Nanoflowers on a nanotube bed. Nano Res. 2014, 7, 1007-1017.

28

Li, J.; Wang, G.; Wang, J.; Miao, S.; Wei, M.; Yang, F.; Yu, L.; Bao, X. Architecture of PtFe/C catalyst with high activity and durability for oxygen reduction reaction. Nano Res. 2014, 7, 1519-1527.

29

Wang, Z.; Chen, W.; Han, Z.; Zhu, J.; Lu, N.; Yang, Y.; Ma, D.; Chen, Y.; Huang, S. Pd embedded in porous carbon (Pd@CMK-3) as an active catalyst for Suzuki reactions: Accelerating mass transfer to enhance the reaction rate. Nano Res. 2014, 7, 1254-1262.

30

Xiang, J.; Li, P.; Chong, H.; Feng, L.; Fu, F.; Wang, Z.; Zhang, S.; Zhu, M. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337-1343.

31

Chen, P.; Zhou, X.; Shen, H.; Andoy, N. M.; Choudhary, E.; Han, K. S.; Liu, G.; Meng, W. Single-molecule fluorescence imaging of nanocatalytic processes. Chem. Soc. Rev. 2010, 39, 4560-4570.

32

Chen, P.; Zhou, X.; Andoy, N. M.; Han, K. S.; Choudhary, E.; Zou, N.; Chen, G.; Shen, H. Spatiotemporal catalytic dynamics within single nanocatalysts revealed by single-molecule microscopy. Chem. Soc. Rev. 2014, 43, 1107-1117.

33

Zhou, X.; Xu, W.; Liu, G.; Panda, D.; Chen, P. Size- dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level. J. Am. Chem. Soc. 2010, 132, 138-146.

34

Xu, W.; Shen, H.; Liu, G.; Chen, P. Single-molecule kinetics of nanoparticle catalysis. Nano Res. 2009, 2, 911-922.

35

Andoy, N. M.; Zhou, X.; Choudhary, E.; Shen, H.; Liu, G.; Chen, P. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 2013, 135, 1845-1852.

36

Zhou, X.; Choudhary, E.; Andoy, N. M.; Zou, N.; Chen, P. Scalable parallel screening of catalyst activity at the single- particle level and subdiffraction resolution. Acs Catal. 2013, 3, 1448-1453.

37

Sambur, J. B.; Chen, P. Approaches to single-nanoparticle catalysis. Annu. Rev. Phys. Chem. 2014, 65, 395-422.

38

Johnson, C. J.; Dujardin, E.; Davis, S. A.; Murphy, C. J.; Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765-1770.

39

Gai, P. L.; Harmer, M. A. Surface atomic defect structures and growth of gold nanorods. Nano Lett. 2002, 2, 771-774.

40

Gulati, A.; Liao, H.; Hafner, J. H. Monitoring gold nanorod synthesis by localized surface plasmon resonance. J. Phys. Chem. B 2006, 110, 22323-22327.

41

Martin, J. J.; Armington, A. F. Effect of growth-rate on quartz deffects. J. Cryst. Growth 1983, 62, 203-206.

42

Morris, N. D.; Mallouk, T. E. A high-throughput optical screening method for the optimization of colloidal water oxidation catalysts. J. Am. Chem. Soc. 2002, 124, 11114- 11121.

43

Yi, J. P.; Fan, Z. G.; Jiang, Z. W.; Li, W. S.; Zhou, X. P. High-throughput parallel reactor system for propylene oxidation catalyst investigation. J. Comb. Chem. 2007, 9, 1053-1059.

44

Kirstein, J.; Platschek, B.; Jung, C.; Brown, R.; Bein, T.; Brauchle, C. Exploration of nanostructured channel systems with single-molecule probes. Nat. Mater. 2007, 6, 303-310.

45

Krishna, R. Diffusion in porous crystalline materials. Chem. Soc. Rev. 2012, 41, 3099-3118.

46

Troeh, F. R.; Jabro, J. D.; Kirkham, D. Gaseous diffusion equations for porous materials. Geoderma 1982, 27, 239-253.

47

Zurner, A.; Kirstein, J.; Doblinger, M.; Brauchle, C.; Bein, T. Visualizing single-molecule diffusion in mesoporous materials. Nature 2007, 450, 705-708.

48

Roeffaers, M. B. J.; De Cremer, G.; Libeert, J.; Ameloot, R.; Dedecker, P.; Bons, A. J.; Bückins, M.; Martens, J. A.; Sels, B. F.; De Vos, D. E. et al. Super-resolution reactivity mapping of nanostructured catalyst particles. Angew. Chem. Int. Ed. 2009, 48, 9285-9289.

49

DeCremer, G.; Roeffaers, M. B. J.; Bartholomeeusen, E.; Lin, K.; Dedecker, P.; Pescarmona, P. P.; Jacobs, P. A.; De Vos, D. E.; Hofkens, J.; Sels, B. F. High-resolution single- turnover mapping reveals intraparticle diffusion limitation in Ti-MCM-41-catalyzed epoxidation. Angew. Chem. Int. Ed. 2010, 49, 908-911.

50

Liang, Y.; Wang, H.; Casalongue, H.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701-705.

51

Cao, H.; Xiao, Y.; Lu, Y.; Yin, J.; Li, B.; Wu, S.; Wu, X. Ag2Se complex nanostructures with photocatalytic activity and superhydrophobicity. Nano Res. 2010, 3, 863-873.

52

Zhang, Q.; Joo, J. B.; Lu, Z.; Dahl, M.; Oliveira, D. L.; Ye, M.; Yin, Y. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103-114.

53

Li, H.; Wang, D.; Fan, H.; Jiang, T.; Li, X.; Xie, T. Synthesis of ordered multivalent Mn-TiO2 nanospheres with tunable size: A high performance visible-light photocatalyst. Nano Res. 2011, 4, 460-469.

54

Tachikawa, T.; Wang, N.; Yamashita, S.; Cui, S. C.; Majima, T. Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. 2010, 49, 8593-8597.

55

Tachikawa, T.; Yamashita, S.; Majima, T. Evidence for crystal-face-dependent TiO2 photocatalysis from single- molecule imaging and kinetic analysis. J. Am. Chem. Soc. 2011, 133, 7197-7204.

56

Banin, U.; Ben-Shahar, Y.; Vinokurov, K. Hybrid semiconductor-metal nanoparticles: From architecture to function. Chem. Mater. 2014, 26, 97-110.

57

Ha, J. W.; Ruberu, T. P. A.; Han, R.; Dong, B.; Vela, J.; Fang, N. Super-resolution mapping of photogenerated electron and hole separation in single metal-semiconductor nanocatalysts. J. Am. Chem. Soc. 2014, 136, 1398-1408.

58

Wang, N.; Tachikawa, T.; Majima, T. Single-molecule, single-particle observation of size-dependent photocatalytic activity in Au/TiO2 nanocomposites. Chem. Sci. 2011, 2, 891-900.

59

Tachikawa, T.; Yonezawa, T.; Majima, T. Super-resolution mapping of reactive sites on titania-based nanoparticles with water-soluble fluorogenic probes. ACS Nano 2013, 7, 263-275.

60

Tachikawa, T.; Ohsaka, T.; Bian, Z.; Majima, T. Single- molecule fluorescence detection of effective adsorption sites at the metal oxide-solution interface. J. Phys. Chem. C 2013, 117, 11219-11228.

61

Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 1997, 78, 1667-1670.

62

Nie, S.; Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102-1106.

63

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu D. Y. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392-395.

64

Willets, K. A.; Stranahan, S. M.; Weber, M. L. Shedding light on surface-enhanced Raman scattering hot spots through single-molecule super-resolution imaging. J. Phys. Chem. Lett. 2012, 3, 1286-1294.

65

Weber, M. L.; Willets, K. A. Correlated super-resolution optical and structural studies of surface-enhanced raman scattering hot spots in silver colloid aggregates. J. Phys. Chem. Lett. 2011, 2, 1766-1770.

66

Titus, E. J.; Willets, K. A. Superlocalization surface-enhanced raman scattering microscopy: Comparing point spread function models in the ensemble and single-molecule limits. ACS Nano 2013, 7, 8284-8294.

67

Willets, K. A. Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 2014, 43, 3854-3864.

68

Wilson, A. J.; Willets, K. A. Visualizing site-specific redox potentials on the surface of plasmonic nanoparticle aggregates with superlocalization SERS microscopy. Nano Lett. 2014, 14, 939-945.

69

Willets, K. A. Plasmon point spread functions: How do we model plasmon-mediated emission processes? Front. Phys. 2014, 9, 3-16.

70

Fischer, U. C.; Pohl, D. W. Observation of single-particle plasmons by near-field optical microscopy. Phys. Rev. Lett. 1989, 62, 458-461.

71

Zhou, N.; Li, Y.; Xu, X. Resolving near-field from high order signals of scattering near-field scanning optical microscopy. Opt. Express 2014, 22, 18715-18723.

72

Andrews, D. L. A unified theory of radiative and radiationless molecular energy transfer. Chem. Phys. 1989, 135, 195-201.

73

Ha, T. Single-molecule fluorescence resonance energy transfer. Methods 2001, 25, 78-86.

74

Roy, R.; Hohng, S.; Ha, T. A practical guide to single- molecule FRET. Nat. Methods 2008, 5, 507-516.

75

Chaudhuri, K. D. Concentration quenching of fluorescence in solutions. Zeitschrift für Physik 1959, 154, 34-42.

76

Barzykin, A. V.; Razumov, V. F.; Alfimov, M. V. Fluorescence concentration self-quenching dynamics in monodisperse micellar systems. J. Phys. Chem. 1991, 95, 4814-4818.

77

Soumpasis, D. M. Theoretical analysis of fluorescence photobleaching recovery experiments. Biophys. J. 1983, 41, 95-97.

78

Chen, J.; Jin, Y.; Fahruddin, N.; Zhao, J. X. Development of gold nanoparticle-enhanced fluorescent nanocomposites. Langmuir 2013, 29, 1584-1591.

79

Kühn, S.; Håkanson, U.; Rogobete, L.; Sandoghdar, V. Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys. Rev. Lett. 2006, 97, 017402.

80

Mayilo, S.; Kloster, M. A.; Wunderlich, M.; Lutich, A.; Klar, T. A.; Nichtl, A.; Kürzinger, K.; Stefani, F. D.; Feldmann, J. Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett. 2009, 9, 4558-4563.

Nano Research
Pages 441-455
Cite this article:
Wang W, Gu J, He T, et al. Optical super-resolution microscopy and its applications in nano-catalysis. Nano Research, 2015, 8(2): 441-455. https://doi.org/10.1007/s12274-015-0709-y

811

Views

21

Crossref

N/A

Web of Science

20

Scopus

1

CSCD

Altmetrics

Received: 09 September 2014
Revised: 25 December 2014
Accepted: 29 December 2014
Published: 26 January 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return