Journal Home > Volume 8 , Issue 6

Temperature measurement in biology and medical diagnostics, along with sensitive temperature probing in living cells, is of great importance; however, it still faces significant challenges. Metal nanoclusters (NCs) with attractive luminescent properties may be promising candidates to overcome such challenges. Here, a novel one-step synthetic method is presented to prepare highly fluorescent copper NCs (CuNCs) in ambient conditions by using glutathione (GSH) as both the reducing agent and the protective layer preventing the aggregation of the as-formed NCs. The resultant CuNCs, with an average diameter of 2.3 nm, contain 1-3 atoms and exhibit red fluorescence (λem = 610 nm) with high quantum yields (QYs, up to 5.0%). Interestingly, the fluorescence signal of the CuNCs is reversibly responsive to the environmental temperature in the range of 15-80 ℃. Furthermore, as the CuNCs exhibit good biocompatibility, they can pervade the MC3T3-E1 cells and enable measurements over the physiological temperature range of 15-45 ℃ with the use of the confocal fluorescence imaging method. In view of the facile synthesis method and attractive fluorescence properties, the as-prepared CuNCs may be used as photoluminescence thermometers and biosensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-step synthesis of fluorescent smart thermo-responsive copper clusters: A potential nanothermometer in living cells

Show Author's information Chan Wang1,3Lin Ling1,2Yagang Yao2( )Qijun Song1( )
Key Laboratory of Food Colloids and BiotechnologyMinistry of EducationSchool of Chemical & Material EngineeringJiangnan UniversityWuxi214122China
Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhou215123China
State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Chemistry and Chemical EngineeringNanjing Tech UniversityNanjing210009China

Abstract

Temperature measurement in biology and medical diagnostics, along with sensitive temperature probing in living cells, is of great importance; however, it still faces significant challenges. Metal nanoclusters (NCs) with attractive luminescent properties may be promising candidates to overcome such challenges. Here, a novel one-step synthetic method is presented to prepare highly fluorescent copper NCs (CuNCs) in ambient conditions by using glutathione (GSH) as both the reducing agent and the protective layer preventing the aggregation of the as-formed NCs. The resultant CuNCs, with an average diameter of 2.3 nm, contain 1-3 atoms and exhibit red fluorescence (λem = 610 nm) with high quantum yields (QYs, up to 5.0%). Interestingly, the fluorescence signal of the CuNCs is reversibly responsive to the environmental temperature in the range of 15-80 ℃. Furthermore, as the CuNCs exhibit good biocompatibility, they can pervade the MC3T3-E1 cells and enable measurements over the physiological temperature range of 15-45 ℃ with the use of the confocal fluorescence imaging method. In view of the facile synthesis method and attractive fluorescence properties, the as-prepared CuNCs may be used as photoluminescence thermometers and biosensors.

Keywords: fluorescence, cellular imaging, copper nanoclusters, nanothermometer

References(57)

1

Okabe, K.; Inada, N.; Gota, C.; Harada, Y.; Funatsu, T.; Uchiyama, S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat. Commun. 2012, 3, 705-713.

2

Jaque, D.; Vetrone, F. Luminescence nanothermometry. Nanoscale 2012, 4, 4301-4326.

3

McLaurin, E. J.; Bradshaw, L. R.; Gamelin, D. R. Dual-emitting nanoscale temperature sensors. Chem. Mater. 2013, 25, 1283-1292.

4

McCabe, K. M.; Hernandez, M. Molecular thermometry. Pediatr. Res. 2010, 67, 469-475.

5

Wolfbeis, O. S. Sensor paints. Adv. Mater. 2008, 20, 3759-3763.

6

Lee, J.; Kotov, N. A. Thermometer design at the nanoscale. Nano Today 2007, 2, 48-51.

7

Ring, E. F. J. The historical development of temperature measurement in medicine. Infrared Phys. Technol. 2007, 49, 297-301.

8

Löw, P.; Kim, B.; Takama, N.; Bergaud, C. High-spatial-resolution surface-temperature mapping using fluorescent thermometry. Small 2008, 4, 908-914.

9

Donner, J. S.; Thompson, S. A.; Kreuzer, M. P.; Baffou, G.; Quidant, R. Mapping intracellular temperature using green fluorescent protein. Nano Lett. 2012, 12, 2107-2111.

10

Maestro, L. M.; Jacinto, C.; Silva, U. R.; Vetrone, F.; Capobianco, J. A.; Jaque, D.; Solé, J. G. CdTe quantum dots as nanothermometers: Towards highly sensitive thermal imaging. Small 2011, 7, 1774-1778.

11

Albers, A. E.; Chan, E. M.; McBride, P. M.; Ajo-Franklin, C. M.; Cohen, B. E.; Helms, B. A. Dual-emitting quantum dot/quantum rod-based nanothermometers with enhanced response and sensitivity in live cells. J. Am. Chem. Soc. 2012, 134, 9565-9568.

12

Peng, H. S.; Stich, M. I. J.; Yu, J. B.; Sun, L. N.; Fischer, L. H.; Wolfbeis, O. S. Luminescent europium(Ⅲ) nanoparticles for sensing and imaging of temperature in the physiological range. Adv. Mater. 2010, 22, 716-719.

13

Fischer, L. H.; Harms, G. S.; Wolfbeis, O. S. Upconverting nanoparticles for nanoscale thermometry. Angew. Chem. Int. Ed. 2011, 50, 4546-4551.

14

Gota, C.; Okabe, K.; Funatsu, T.; Harada, Y.; Uchiyama, S. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry. J. Am. Chem. Soc. 2009, 131, 2766-2767.

15

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430-433.

16

Chen, Y.; Zhou, H. P.; Wang, Y.; Li, W. Y.; Chen, J.; Lin, Q.; Yu, C. Substrate hydrolysis triggered formation of fluorescent gold nanoclusters-a new platform for the sensing of enzyme activity. Chem. Commun. 2013, 49, 9821-9823.

17

Wang, C. X.; Zhang, D.; Xu, L.; Jiang, Y. N.; Dong, F. X.; Yang, B.; Yu, K.; Lin, Q. A simple reducing approach using amine to give dual functional EuSe nanocrystals and morphological tuning. Angew. Chem. Int. Ed. 2011, 50, 7587-7591.

18

Dou, X. Y.; Yuan, X.; Yu, Y.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Xie, J. Lighting up thiolated Au@Ag nanoclusters via aggregation-induced emission. Nanoscale 2014, 6, 157-161.

19

Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401-418.

20

Liu, J. B.; Yu, M. X.; Zhou, C.; Yang, S. Y.; Ning X. H.; Zheng, J. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: Long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 2013, 135, 4978-4981.

21

Yuan, X.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Ultrasmall Ag+-rich nanoclusters as highly efficient nanoreservoirs for bacterial killing. Nano Res. 2014, 7, 301-307.

22

Wang, C.; Huang, Y. Facile preparation of fluorescent Ag-clusters-chitosan-hybrid nanocomposites for bio-applications. New J. Chem. 2014, 38, 657-662.

23

Wang, C.; Wang, C. X.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-directed synthesis of pH-responsive red fluorescent copper nanoclusters and their applications in cellular imaging and catalysis. Nanocale 2014, 6, 1775-1781.

24

Jia, X. F.; Yuan, X.; Li, J.; Li, D. Y.; Wang, E. Stable Cu nanoclusters: From an aggregation induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237-239.

25

Cauzzi, D.; Pattacini, R.; Delferro, M.; Dini, F.; Natale, C. D.; Paolesse, R.; Bonacchi, S.; Montalti, M.; Zaccheroni, N.; Calvaresi, M. et al. Temperature-dependent fluorescence of Cu5 metal clusters: A molecular thermometer. Angew. Chem. Int. Ed. 2012, 51, 9662-9665.

26

Vilar-Vidal, N.; Blanco, M. C.; López-Quintela, M. A.; Rivas, J.; Serra, C. Electrochemical synthesis of very stable photoluminescent copper clusters. J. Phys. Chem. C 2010, 114, 15924-15930.

27

Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800-8808.

28

Choi, M.; Wu, Z.; Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 2010, 132, 9129-9137.

29

Zhang; H.; Huang, X.; Li, L.; Zhang, G. W.; Hussain, I.; Li, Z.; Tan, B. Photoreductive synthesis of water-soluble fluorescent metal nanoclusters. Chem. Commun. 2011, 48, 567-569.

30

Zhang, C. L.; Zhou, Z. J.; Qian, Q. R.; Gao, G.; Li, C.; Feng, L. L.; Wang, Q.; Cui, D. X. Glutathione-capped fluorescent gold nanoclusters for dual-modal fluorescence/X-ray computed tomography imaging. J. Mater. Chem. B 2013, 1, 5045-5053.

31

Wang, C.; Huang, Y. Green route to prepare biocompatible and near infrared thiolate-protected copper nanoclusters for cellular imaging. Nano 2013, 8, 1350054.

32

Kumar, S.; Bolan, M. D.; Bigioni, T. P. Glutathione-stabilized magic-number silver cluster compounds. J. Am. Chem. Soc. 2010, 132, 13141-13143.

33

Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; David, T. L.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem. Int. Ed. 2014, 53, 4623-4627.

34

Luo, Z. T.; Zheng K. Y.; Xie, J. P. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Comm. 2014, 50, 5143-5155.

35

Chen, T. T.; Hu, Y. H.; Cen, Y.; Chu, X.; Lu, Y. A dual-emission fluorescent nanocomplex of gold-cluster-decorated silica particles for live cell imaging of highly reactive oxygen species. J. Am. Chem. Soc. 2013, 135, 11595-11602.

36

Alvarez, M. M.; Khoury, J. T.; Schaaff, T. G.; Shafigullin, M.; Vezmar, I.; Whetten, R. L. Critical sizes in the growth of Au clusters. Chem. Phys. Lett. 1997, 266, 91-98.

37

Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(Ⅰ)-thiolate complexes to ultrabright Au(0)@Au(Ⅰ)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662-16670.

38

Chen, T. H.; Tseng, W. L. (Lysozyme type Ⅵ)-stabilized Au8 clusters: Synthesis mechanism and application for sensing of glutathione in a single drop of blood. Small 2012, 8, 1912-1919.

39

Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T. Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small 2007, 3, 835-839.

40

Wang, C. X.; Xu, L.; Wang, Y.; Zhang, D.; Shi, X. D.; Dong, F. X.; Yu, K.; Lin, Q.; Yang, B. Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury(Ⅱ) at parts-per-billion levels. Chem. Asian J. 2012, 7, 1652-1656.

41

Biswas, S.; Miller, J. T.; Li, Y. H.; Nandakumar, K.; Kumar, C. S. S. R. Developing a millifluidic platform for the synthesis of ultrasmall nanoclusters: Ultrasmall copper nanoclusters as a case study. Small 2012, 8, 688-698.

42

Zhao, M. Q.; Sun, L.; Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc. 1998, 120, 4877-4878.

43

Brege, J. J.; Hamilton, C. E.; Crouse, C. A.; Barron, A. R. Ultrasmall copper nanoparticles from a hydrophobically immobilized surfactant template. Nano Lett. 2009, 9, 2239-2242.

44

Goswami, N.; Giri, A.; Bootharaju, M. S.; Xavier, P. L.; Pradeep, T.; Pal, S. K. Copper quantum clusters in protein matrix: Potential sensor of Pb2+ Ion. Anal. Chem. 2011, 83, 9676-9680.

45

Wei, W. T.; Lu, Y. Z.; Chen, W.; Chen, S. W. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. J. Am. Chem. Soc. 2011, 133, 2060-2063.

46

Luo, Z.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D.; Xie, J. Toward understanding the growth mechanism: Tracing all stable intermediate species from reduction of Au(Ⅰ)-thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577-10580.

47

Wang, C. X.; Wang, Y.; Xu, L.; Shi, X. D.; Li, X. W.; Xu, X. W.; Sun, H. C.; Yang, B.; Lin, Q. A galvanic replacement route to prepare strongly fluorescent and highly stable gold nanodots for cellular imaging. Small 2013, 9, 413-420.

48

Yu, Y.; Luo, Z. T.; Chevrier, D. M.; Leong, D. T.; Zhang, P.; Jiang, D. E.; Xie, J. P. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 2014, 136, 1246-1249.

49

Zheng, K. Y.; Yuan, X.; Goswami, N.; Zhang, Q. B.; Xie, J. P. Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Advances 2014, 4, 60581-60596.

50

Cao, Z. X.; Wang, Y. J.; Zhu, J.; Wu, W.; Zhang, Q. N. Static polarizabilities of copper cluster monocarbonyls CunCO (n = 2-13) and selectivity of CO adsorption on copper clusters. J. Phys. Chem. B 2002, 106, 9649-9654.

51

Poater, A.; Duran, M.; Jaque, P.; Toro-Labbe, A.; Sola, M. Molecular structure and bonding of copper cluster monocarbonyls CunCO (n = 1 - 9). J. Phys. Chem. B 2006, 110, 6526-6536.

52

Jia, X. F.; Li, J.; Wang, E. K. Cu nanoclusters with aggregation induced emission enhancement. Small 2013, 9, 3873-3879.

53

Xia, F.; Feng, L.; Wang, S. T.; Sun, T. L.; Song, W. L.; Jiang, W. H.; Jiang, L. Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv. Mater. 2006, 18, 432-436.

54

Shibu, E. S.; Pradeep, T. Quantum clusters in cavities: Trapped Au15 in cyclodextrins. Chem. Mater. 2011, 23, 989-999.

55

Wang, S. P.; Westcott, S.; Chen, W. Nanoparticle luminescence thermometry. J. Phys. Chem. B 2002, 106, 11203-11209.

56

Joly, A. G.; Chen, W.; Roark, J.; Zhang, J. Z. Temperature dependence of up-conversion luminescence and photoluminescence of Mn2+ in ZnS: Mn2+ nanoparticles. J. Nanosci. Nanotech. 2001, 1, 295-301.

57

Liu, X. J.; Zong, C. H.; Lu, L. H. Fluorescent silver nanoclusters for user-friendly detection of Cu2+ on a paper platform. Analyst 2012, 137, 2406-2414.

File
12274_2015_707_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 October 2014
Revised: 16 December 2014
Accepted: 25 December 2014
Published: 08 April 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 51372265 and 21175060), the Natural Science Foundation of Jiangsu Province, China (No. BK20140392), the Open Foundation of State Key Laboratory of Materials-Oriented Chemical Engineering of Nanjing University of Technology (2014, KL14-12), the Postdoctoral Research Foundation of Jiangsu Province, China (No. 1401058B), and the Science and Technology Project of Suzhou, China (Nos. ZXG201428 and ZXG201401).

Return