Journal Home > Volume 8 , Issue 4

A general method is developed to prepare durable hybrid nanocatalysts by nanostructuring the surface of gold wires via simple alloying and dealloying. The resulting nanoporous gold/Au (NPG/Au) wire catalysts possess nanoporous skins with their thicknesses on robust metal wires specified in a highly controllable manner. As a demonstration, the as-obtained NPG/Au was shown to be a highly active, chemo-selective, and recyclable catalyst for the reduction of nitro compounds and azides using organosilanes as reducing agents.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanostructuring gold wires as highly durable nanocatalysts for selective reduction of nitro compounds and azides with organosilanes

Show Author's information Huifang Guo1Xiuling Yan3Yun Zhi1Zhiwen Li3Cai Wu1Chunliang Zhao1Jing Wang1Zhixin Yu4Yi Ding2,3( )Wei He1( )Yadong Li5
School of Medicine and Tsinghua-Peking Joint Center for Life SciencesTsinghua UniversityBeijing100084China
Institute for New Energy Materials and Low-Carbon Technologiesand School of Materials Science and EngineeringTianjin University of TechnologyTianjin300384China
School of Chemistry and Chemical EngineeringShandong UniversityJinan250100China
Department of Petroleum EngineeringUniversity of StavangerStavanger4036Norway
Department of ChemistryTsinghua UniversityBeijing100084China

Abstract

A general method is developed to prepare durable hybrid nanocatalysts by nanostructuring the surface of gold wires via simple alloying and dealloying. The resulting nanoporous gold/Au (NPG/Au) wire catalysts possess nanoporous skins with their thicknesses on robust metal wires specified in a highly controllable manner. As a demonstration, the as-obtained NPG/Au was shown to be a highly active, chemo-selective, and recyclable catalyst for the reduction of nitro compounds and azides using organosilanes as reducing agents.

Keywords: catalysis, gold, nanocatalyst, reduction

References(40)

1

Xie, T.; Gong, M.; Niu, Z. Q.; Li, S. A.; Yan, X. Y.; Li, Y. D. Shape-controlled CuCl crystallite catalysts for aniline coupling. Nano Res. 2010, 3, 174-179.

2

Hou, C.; Zhao, G. F.; Ji, Y. J.; Niu, Z. Q.; Wang, D. S.; Li, Y. D. Hydroformylation of alkenes over rhodium supported on the metal-organic framework ZIF-8. Nano Res. 2014, 7, 1364-1369.

3

Xiang, J.; Li, P.; Chong, H. B.; Feng, L.; Fu, F. Y.; Wang, Z.; Zhang, S. L.; Zhu, M. Z. Bimetallic Pd-Ni core-shell nanoparticles as effective catalysts for the Suzuki reaction. Nano Res. 2014, 7, 1337-1343.

4

Metin, O.; Ho, S. F.; Alp, C.; Can, H.; Mankin, M. N.; Gultekin, M. S.; Chi, M. F.; Sun, S. H. Ni/Pd core/shell nanoparticles supported on graphene as a highly active and reusable catalyst for Suzuki-Miyaura cross-coupling reaction. Nano Res. 2013, 6, 10-18.

5

Ma, Z.; Dai, S. Development of novel supported gold catalysts: A materials perspective. Nano Res. 2011, 4, 3-32.

6

Cong, H.; Porco, J. A. Chemical synthesis of complex molecules using nanoparticle catalysis. ACS Catal. 2012, 2, 65-70.

7

Chng, L. L.; Erathodiyil, N.; Ying, J. Y. Nanostructured catalysts for organic transformations. Acc. Chem. Res. 2013, 46, 1825-1837.

8

Tuysuz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47-54.

9

Witham, C. A.; Huang, W.; Tsung, C. K.; Kuhn, J. N.; Somorjai, G. A.; Toste, F. D. Converting homogeneous to heterogeneous in electrophilic catalysis using monodisperse metal nanoparticles. Nat. Chem. 2010, 2, 36-41.

10

Cai, S. F.; Duan, H. H.; Rong, H. P.; Wang, D. S.; Li, L. S.; He, W.; Li, Y. D. Highly active and selective catalysis of bimetallic Rh3Ni1 nanoparticles in the hydrogenation of nitroarenes. ACS Catal. 2013, 3, 608-612.

11

Cai, S. F.; Rong, H. P.; Yu, X. F.; Liu, X. W.; Wang, D. S.; He, W.; Li, Y. D. Room temperature activation of oxygen by monodispersed metal nanoparticles: Oxidative dehydrogenative coupling of anilines for azobenzene syntheses. ACS Catal. 2013, 3, 478-486.

12

Li, L. S.; Niu, Z. Q.; Cai, S. F.; Zhi, Y.; Li, H.; Rong, H. P.; Liu, L. C.; Liu, L.; He, W.; Li, Y. D. A PdAg bimetallic nanocatalyst for selective reductive amination of nitroarenes. Chem. Commun. 2013, 49, 6843-6845.

13

Niu, Z. Q.; Peng, Q.; Zhuang, Z. B.; He, W.; Li, Y. D. Evidence of an oxidative-addition-promoted Pd-leaching mechanism in the Suzuki reaction by using a Pd-nanostructure design. Chem. Eur. J. 2012, 18, 9813-9817.

14

Zhang, Q.; Cai, S. F.; Li, L. S.; Chen, Y. F.; Rong, H. P.; Niu, Z. Q.; Liu, J. J.; He, W.; Li, Y. D. Direct syntheses of styryl ethers from benzyl alcohols via Ag nanoparticle- catalyzed tandem aerobic oxidation. ACS Catal. 2013, 3, 1681-1684.

15

Xu, C.; Su, J.; Xu, X.; Liu, P.; Zhao, H.; Tian, F.; Ding, Y. Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 2007, 129, 42-43.

16

Xu, C.; Xu, X.; Su, J.; Ding, Y. Research on unsupported nanoporous gold catalyst for CO oxidation. J. Catal. 2007, 252, 243-248.

17

Yin, H. M.; Zhou, C. Q.; Xu, C. X.; Liu, P. P.; Xu, X. H.; Ding, Y. Aerobic oxidation of d-glucose on support-free nanoporous gold. J. Phys. Chem. C. 2008, 112, 9673-9678.

18

Zhang, J. T.; Liu, P. P.; Ma, H. Y.; Ding, Y. Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C. 2007, 111, 10382-10388.

19

Zhang, X. M.; Ding, Y. Unsupported nanoporous gold for heterogeneous catalysis. Catal. Sci. Technol. 2013, 3, 2862-2868.

20

Zielasek, V.; Jurgens, B.; Schulz, C.; Biener, J.; Biener, M. M.; Hamza, A. V.; Baumer, M. Gold catalysts: Nanoporous gold foams. Angew. Chem. Int. Ed. 2006, 45, 8241-8244.

21

Wittstock, A.; Neumann, B.; Schaefer, A.; Dumbuya, K.; Kubel, C.; Biener, M. M.; Zielasek, V.; Steinruck, H. P.; Gottfried, J. M.; Biener, J. et al. Nanoporous Au: An unsupported pure gold catalyst? J. Phys. Chem. C. 2009, 113, 5593-5600.

22

Wittstock, A.; Zielasek, V.; Biener, J.; Friend, C. M.; Baumer, M. Nanoporous gold catalysts for selective gas- phase oxidative coupling of methanol at low temperature. Science 2010, 327, 319-322.

23

Wittstock, A.; Wichmann, A.; Baumert, M. Nanoporous gold as a platform for a building block catalyst. ACS Catal. 2012, 2, 2199-2215.

24

Kosuda, K. M.; Wittstock, A.; Friend, C. M.; Baumer, M. Oxygen-mediated coupling of alcohols over nanoporous gold catalysts at ambient pressures. Angew. Chem. Int. Ed. 2012, 51, 1698-1701.

25

Yan, M.; Jin, T. A.; Chen, Q.; Ho, H. E.; Fujita, T.; Chen, L. Y.; Bao, M.; Chen, M. W.; Asao, N.; Yamamoto, Y. Unsupported nanoporous gold catalyst for highly selective hydrogenation of quinolines. Org. Lett. 2013, 15, 1484-1487.

26

Ishikawa, Y.; Yamamoto, Y.; Asao, N. Selective hydrosilylation of alkynes with a nanoporous gold catalyst. Catal. Sci. Technol. 2013, 3, 2902-2905.

27

Asao, N.; Ishikawa, Y.; Hatakeyama, N.; Menggenbateer; Yamamoto, Y.; Chen, M. W.; Zhang, W.; Inoue, A. Nanostructured materials as catalysts: Nanoporous-gold- catalyzed oxidation of organosilanes with water. Angew. Chem. Int. Ed. 2010, 49, 10093-10095.

28

Yan, M.; Jin, T.; Ishikawa, Y.; Minato, T.; Fujita, T.; Chen, L. Y.; Bao, M.; Asao, N.; Chen, M. W.; Yamamoto, Y. Nanoporous gold catalyst for highly selective semihydrogenation of alkynes: Remarkable effect of amine additives. J. Am. Chem. Soc. 2012, 134, 17536-17542.

29

Wienhofer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and selective iron-catalyzed transfer hydrogenation of nitroarenes without base. J. Am. Chem. Soc. 2011, 133, 12875-12879.

30

Sadykov, V. A.; Isupova, L. A.; Zolotarskii, I. A.; Bobrova, L. N.; Noskov, A. S.; Parmon, V. N.; Brushtein, E. A.; Telyatnikova, T. V.; Chernyshev, V. I.; Lunin, V. V. Oxide catalysts for ammonia oxidation in nitric acid production: Properties and perspectives. Appl. Catal. A-Gen. 2000, 204, 59-87.

31

Ding, Y.; Erlebacher, J. Nanoporous metals with controlled multimodal pore size distribution. J. Am. Chem. Soc. 2003, 125, 7772-7773.

32

Ding, Y.; Kim, Y. J.; Erlebacher, J. Nanoporous gold leaf: "Ancient technology"/advanced material. Adv. Mater. 2004, 16, 1897-1900.

33

Ding, Y.; Chen, M. W. Nanoporous metals for catalytic and optical applications. MRS Bull. 2009, 34, 569-576.

34

Corma, A.; Serna, P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts. Science 2006, 313, 332-334.

35

Boronat, M.; Concepcion, P.; Corma, A.; Gonzalez, S.; Illas, F.; Serna, P. A molecular mechanism for the chemoselective hydrogenation of substituted nitroaromatics with nanoparticles of gold on TiO2 catalysts: A cooperative effect between gold and the support. J. Am. Chem. Soc. 2007, 129, 16230-16237.

36

He, L.; Wang, L. C.; Sun, H.; Ni, J.; Cao, Y.; He, H. Y.; Ean, K. N. Efficient and selective room-temperature gold-catalyzed reduction of nitro compounds with CO and H2O as the hydrogen source. Angew. Chem. Int. Ed. 2009, 48, 9538- 9541.

37

Westerhaus, F. A.; Jagadeesh, R. V.; Wienhofer, G.; Pohl, M. M.; Radnik, J.; Surkus, A. E.; Rabeah, J.; Junge, K.; Junge, H.; Nielsen, M. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 2013, 5, 537-543.

38

Jagadeesh, R. V.; Surkus, A. E.; Junge, H.; Pohl, M. M.; Radnik, J.; Rabeah, J.; Huan, H. M.; Schunemann, V.; Bruckner, A.; Beller, M. Nanoscale Fe2O3-based catalysts for selective hydrogenation of nitroarenes to anilines. Science 2013, 342, 1073-1076.

39

Park, S.; Lee, I. S.; Park, J. A magnetically separable gold catalyst for chemoselective reduction of nitro compounds. Org. Biomol. Chem. 2013, 11, 395-399.

40

Ahammed, S.; Saha, A.; Ranu, B. C. Hydrogenation of azides over copper nanoparticle surface using ammonium formate in water. J. Org. Chem. 2011, 76, 7235-7239.

File
12274_2015_703_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 November 2014
Revised: 16 December 2014
Accepted: 21 December 2014
Published: 03 March 2015
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was supported by financial support from the Tsinghua-Peking Joint Center for Life Sciences, the National Basic Research Program of China (Nos. 2012CB224802 and 2012CB932800), and the National Natural Science Foundation of China (Nos. 21371107 and 51171092). Y. D. is a Tai-Shan Scholar supported by the Fundamental Research Funds of Shandong University and he also acknowledges the Otto Mønsteds Fond for a visiting professorship at the Technical University of Denmark (DTU).

Return