Journal Home > Volume 8 , Issue 6

Strain engineering is a powerful tool to tailor the physical properties of materials coherently stacked in an epitaxial heterostructure. Such an approach, applied to the mature field of planar heteroepitaxy, has yielded a variety of new phenomena and devices. Recently, heteroepitaxial vertically aligned nanocomposites have emerged as alternatives to planar structures. Owing to the peculiar geometry of such nanoarchitectures, efficient strain control can be achieved, opening the way to novel functionalities. In this paper, we report a very large tensile axial strain in epitaxial transition metal nanowires embedded in an oxide matrix. We show that axial strains in excess of 1.5% can be sustained over a large thickness (a few hundred nanometers) in epitaxial nanowires having ultrasmall diameters (~3-6 nm). The axial strain depends on the diameter of the nanowires, reflecting its epitaxial nature and the balance of interface and elastic energies. Furthermore, it is experimentally shown that such strain is metastable, in agreement with the calculations performed in the framework of the Frenkel-Kontorova model. The diameter dependence and metastability provide effective ways to control the strain, an appealing feature for the design of functional nanoarchitectures.


menu
Abstract
Full text
Outline
About this article

Huge metastable axial strain in ultrathin heteroepitaxial vertically aligned nanowires

Show Author's information Vivien Schuler1,2Francisco Javier Bonilla1,2,Dominique Demaille1,2Alessandro Coati3Alina Vlad3Yves Garreau3,4Michèle Sauvage-Simkin3Anastasiia Novikova3Emiliano Fonda3Sarah Hidki1,2Victor Etgens5Franck Vidal1,2( )Yunlin Zheng1,2( )
Sorbonne Universités UPMCInstitut des NanoSciences de Paris, 4 place JussieuParis75005France
CNRS UMR7588Institut des NanoSciences de Paris, 4 place JussieuParis75005France
Synchrotron SoleilL'Orme des Merisiers Saint-Aubin, BP 4891192Gif-sur-Yvette CedexFrance
Université Paris DiderotSorbonne Paris Cité, MPQ, UMR 7162 CNRSBatiment Condorcet, Case courrier 7021, 75205, Paris Cedex 13France
Université de Versailles Saint-Quentin en Yvelines 55, Av. de ParisVersailles78035France

Present address: LPCNO, INSA, 135 avenue de Rangueil, 31077 Toulouse cedex 4, France

Abstract

Strain engineering is a powerful tool to tailor the physical properties of materials coherently stacked in an epitaxial heterostructure. Such an approach, applied to the mature field of planar heteroepitaxy, has yielded a variety of new phenomena and devices. Recently, heteroepitaxial vertically aligned nanocomposites have emerged as alternatives to planar structures. Owing to the peculiar geometry of such nanoarchitectures, efficient strain control can be achieved, opening the way to novel functionalities. In this paper, we report a very large tensile axial strain in epitaxial transition metal nanowires embedded in an oxide matrix. We show that axial strains in excess of 1.5% can be sustained over a large thickness (a few hundred nanometers) in epitaxial nanowires having ultrasmall diameters (~3-6 nm). The axial strain depends on the diameter of the nanowires, reflecting its epitaxial nature and the balance of interface and elastic energies. Furthermore, it is experimentally shown that such strain is metastable, in agreement with the calculations performed in the framework of the Frenkel-Kontorova model. The diameter dependence and metastability provide effective ways to control the strain, an appealing feature for the design of functional nanoarchitectures.

Keywords: self-assembly, strain, nanowires, heteroepitaxy

References(41)

1

MacManus-Driscoll, J. L. Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 2010, 20, 2035-2045.

2

Chen, A. P.; Bi, Z. X.; Jia, Q. X.; MacManus-Driscoll, J. L.; Wang, H. Y. Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 2013, 61, 2783-2792.

3

Zhang, W.; Chen, A.; Bi, Z.; Jia, Q.; MacManus-Driscoll, J. L.; Wang, H. Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: from lateral to vertical control. Curr. Opin. Solid ST. M. 2014, 18, 6-18.

4

Zheng, H.; Wang, J.; Lofland, S. E.; Ma, Z.; Mohaddes-Ardabili, L.; Zhao, T.; Salamanca-Riba, L.; Shinde, S. R.; Ogale, S. B.; Bai, F. et al. Multiferroic BaTiO3-CoFe2O4 nanostructures. Science 2004, 303, 661-663.

5

Mohaddes-Ardabili, L.; Zheng, H.; Ogale, S. B.; Hannoyer, B.; Tian, W.; Wang, J.; Lofland, S. E.; Shinde, S. R.; Zhao, T.; Jia, Y. et al. Self-assembled single-crystal ferromagnetic iron nanowires formed by decomposition. Nat. Mater. 2004, 3, 533-538.

6

Zheng, H. M.; Straub, F.; Zhan, Q.; Yang, P. -L.; Hsieh, W. -K.; Zavaliche, F.; Chu, Y. -H.; Dahmen, U.; Ramesh, R. Self-assembled growth of BiFeO3-CoFe2O4 nanostructures. Adv. Mater. 2006, 18, 2747-2752.

7

Zheng, H. M.; Zhan, Q.; Zavaliche, F.; Sherburne, M.; Straub, F.; Cruz, M. P.; Chen, L. -Q.; Dahmen, U.; Ramesh, R. Controlling self-assembled perovskite-spinel nanostructures. Nano Lett. 2006, 6, 1401-1407.

8

Zhan, Q., Yu, R.; Crane, S. P.; Zheng, H.; Kisielowski, C.; Ramesh, R. Structure and interface chemistry of perovskite-spinel nanocomposite thin films. Appl. Phys. Lett. 2006, 89, 172902.

9

MacManus-Driscoll, J. L.; Zerrer, P.; Wang, H. Y.; Yang, H.; Yoon, J.; Fouchet, A.; Yu, R.; Blamire, M. G.; Jia, Q. X. Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 2008, 7, 314-320.

10

Dix, N.; Muralidharan, R.; Rebled, J. -M.; Estrade, S.; Peiro, F.; Varela, M.; Fontcuberta, J.; Sanchez, F. Selectable spontaneous polarization direction and magnetic anisotropy in BiFeO3-CoFe2O4 epitaxial nanostructures. ACS Nano 2010, 4, 4955-4961.

11

Chen, A. P.; Bi, Z. X.; Hazariwala, H.; Zhang, X. H.; Su, Q.; Chen, L.; Jia, Q. X.; MacManus-Driscoll, J. L.; Wang, H. Y. Microstructure, magnetic, and low-field magnetotransport properties of self-assembled (La0.7Sr0., 3MnO3)(0.5): (CeO2)(0.5) vertically aligned nanocomposite thin films. Nanotechnology 2011, 22, 315712.

12

Aimon, N. M.; Kim, D. H.; Choi, H. K.; Ross, C. A. Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 2012, 100, 092901.

13

Hu, G. F.; Zhou, R. R.; Yu, R. M.; Dong, L.; Pan, C. F.; Wang, Z. L. Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors. Nano Res. 2014, 7, 1083-1091.

14

Fu, Q.; Zhang, Z. Y.; Kou, L. Z.; Wu, P. C.; Han, X. B.; Zhu, X. L.; Gao, J. Y.; Xu, J.; Zhao, Q.; Guo, W. L. et al. Linear strain-gradient effect on the energy bandgap in bent CdS nanowires. Nano Res. 2011, 4, 308-314.

15

Huang, L. B.; Lu, S. Y.; Chang, P. C.; Banerjee, K.; Hellwarth, R.; Lu, J. G. Structural and optical verification of residual strain effect in single crystalline CdTe nanowires. Nano Res. 2014, 7, 228-235.

16

Wedler, G.; Schneider, C. M.; Trampert, A.; Koch R. Strain relief of heteroepitaxial bcc-Fe(001) films. Phys. Rev. Lett. 2004, 93, 236101.

17

Jamet, M.; Barski, A.; Devillers, T.; Poydenot, V.; Dujardin, R.; Bayle-Guillemaud, P.; Rothman, J.; Bellet-Amalric, E., Marty, A.; Cibert, J. et al.. High Curie temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns. Nat. Mater. 2006, 5, 653-659.

18

Tardif, S.; Favre-Nicolin, V.; Lancon, F.; Arras, E.; Jamet, M.; Barski, A.; Porret, C.; Bayle-Guillemaud, P.; Pochet, P.; Devillers, T. et al. Strain and correlation of self-organized Ge1-xMnx nanocolumns embedded in Ge(001). Phys. Rev. B 2010, 82, 104101.

19

Chaix-Pluchery, O.; Cochard, C.; Jadhav, P.; Kreisel, J.; Dix, N.; Sánchez, F.; Fontcuberta, J. Strain analysis of multiferroic BiFeO3-CoFe2O4 nanostructures by Raman scattering. Appl. Phys. Lett. 2011, 99, 072901.

20

Aimon, N. M.; Liao, J.; Ross C. A. Simulation of inhomogeneous magnetoelastic anisotropy in ferroelectric/ferromagnetic nanocomposites. Appl. Phys. Lett. 2012, 101, 232901.

21

Tsai, C. Y.; Chen, H. R.; Chang, F. C.; Tsai, W. C.; Cheng, H. M.; Chu, Y. H.; Lai, C. H.; Hsieh W. F. Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3-CoFe2O4 nanostructures. Appl. Phys. Lett. 2013, 102, 132905.

22

Vidal, F.; Zheng, Y.; Milano, J.; Demaille, D.; Schio, P.; Fonda, E.; Vodungbo, B. Nanowires formation and the origin of Ferromagnetism in a diluted magnetic oxide. Appl. Phys. Lett. 2009, 95, 152510.

23

Schio, P.; Vidal, F.; Zheng, Y.; Milano, J.; Fonda, E.; Demaille, D.; Vodungbo, B.; Varalda, J.; de Oliveira, A. J. A.; Etgens, V. H. Magnetic response of cobalt nanowires with diameter below 5 nm. Phys. Rev. B 2010, 82, 094436.

24

Vidal, F.; Zheng, Y.; Schio, P.; Bonilla, F. J.; Barturen, M.; Milano, J.; Demaille, D.; Fonda, E.; de Oliveira, A. J. A.; Etgens, V. H. Mechanism of localization of the magnetization reversal in 3 nm wide Co nanowires. Phys. Rev. Lett. 2012, 109, 117205.

25

Bonilla, F. J.; Novikova, A.; Vidal, F.; Zheng, Y. L.; Fonda, E.; Demaille, D.; Schuler, V.; Coati, A.; Vlad, A.; Garreau, Y. et al. Combinatorial growth and anisotropy control of self-assembled epitaxial ultrathin alloy nanowires. ACS Nano 2013, 7, 4022-4029.

26

Dubois, S.; Colin, J.; Duvail J. L.; Piraux, L. Evidence for strong magnetoelastic effects in Ni nanowires embedded in polycarbonate membranes. Phys. Rev. B 2000, 61, 14315-14318.

27

Zeng, H.; Michalski, S.; Kirby, R. D.; Sellmyer, D. J.; Menon, L.; Bandyopadhyay, S. Effects of surface morphology on magnetic properties of Ni nanowire arrays in self-ordered porous alumina. J. Phys. : Condens. Matter 2002, 14, 715-721.

28

Kumar, A.; Fähler, S.; Schlörb, H.; Leistner, K.; Schultz, L. Competition between shape anisotropy and magnetoelastic anisotropy in Ni nanowires electrodeposited within alumina templates. Phys. Rev. B 2006, 73, 064421.

29

Pirota, K. R.; Silva, E. L.; Zanchet, D.; Navas, D.; Vázquez, M.; Hernández-Vélez, M.; Knobel, M. Size effect and surface tension measurements in Ni and Co nanowires. Phys. Rev. B 2007, 76, 233410.

30

Navas, D.; Pirota, K. R.; Zelis, P. M.; Velazquez, D.; Ross, C. A.; Vazquez, M. Effects of the magnetoelastic anisotropy in Ni nanowire arrays. J. Appl. Phys. 2008, 103, 07D523.

31

Leitao, D. C.; Ventura, J.; Sousa, C. T.; Pereira, A. M.; Sousa, J. B.; Vazquez, M.; Araujo, J. P. Insights into the role of magnetoelastic anisotropy in the magnetization reorientation of magnetic nanowires. Phys. Rev. B 2011, 84, 014410.

32

Narayan, J.; Larson, B.C. Domain epitaxy: a unified paradigm for thin film growth. J. Appl. Phys. 2003, 93, 278-285.

33

Kontorova, T.; Frenkel, Y. On the theory of plastic deformation and twinning. Zh. Eksp. Teor. Fiz. 1938, 8, 89.

34

Frenkel, J; Kontorova, T. On the theory of plastic deformation and twinning. J. Phys. USSR 1939, 1, 137-149.

35

Braun, O. M.; Kivshar, Y. The Frenkel-Kontorova Model: Concepts, Methods, and Applications; Springer-Verlag: Berlin-Heidelberg, 2004.

DOI
36

Danescu, A.; Gobaut, B.; Penuelas, J.; Grenet, G.; Favre-Nicolin, V.; Blanc, N.; Zhou, T.; Renaud, G.; Saint-Girons, G. Interface accommodation mechanism for weakly interacting epitaxial systems. Appl. Phys. Lett. 2013, 103, 021602.

37

Sun, J. Y.; Wu, C.; Silly, F.; Koós, A. A.; Dillon, F.; Grobert, N.; Castell, M. R. Controlled growth of Ni nanocrystals on SrTiO3 and their application in the catalytic synthesis of carbon nanotubes. Chem. Commun. 2013, 49, 3748-3750.

38

Suzuki, T.; Nishi, Y.; Fujimoto, M. Defect structure in homoepitaxial non-stoichiometric strontium titanate thin films. Philos. Mag. A 2000, 80, 621.

39

Ohnishi, T.; Shibuya, K.; Yamamoto, T.; Lippmaa, M. Defects and transport in complex oxide thin films. J. Appl. Phys. 2008, 103, 103703.

40

Brooks, C. M.; Kourkoutis, L. F.; Heeg, T.; Schubert, J.; Muller, D. A.; Schlom, D. G. Growth of homoepitaxial SrTiO3 thin films by molecular beam epitaxy. Appl. Phys. Lett. 2009, 94, 162905.

41
Jones, E.; Oliphant, T.; Peterson P., et al. SciPy: Open source scientific tools for Python. 2001; http://www.scipy.org/
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 November 2014
Revised: 18 December 2014
Accepted: 23 December 2014
Published: 09 March 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

We are grateful to the SOLEIL staff for smoothly running the facility and to F. Breton for the design of the PLD control system. We acknowledge support from Agence Nationale de la Recherche, contract ANR-2011-BS04-007. We thank B. Capelle and J.-M. Guigner, IMPMC, CNRS-UPMC, for access to the TEM facilities.

Return