AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement

A. Chiolerio( )I. RoppoloV. CaudaM. CrepaldiS. BocchiniK. BejtkaA. VernaC. F. Pirri
Center for Space Human RoboticsIstitutoItaliano di Tecnologia, Corso Trento 21Torino10129Italy
Show Author Information

Graphical Abstract

Abstract

By using two separate components, mem-sensing devices can be fabricated combining the sensitivity of a transducer with non-volatile memory. Here, we discuss how a mem-sensor can be fabricated using a single material with built-in sensing andmemory capabilities, based on ZnO microwires (MWs) embedded in a photocurable resin and processed from liquid by vertically aligning the MWs across the polymeric matrix using dielectrophoresis. This results in an ultraviolet (UV) photodetector, a device that is widely applied in fields such as telecommunication, health, and defense, and has so far implemented using bulk inorganic semiconductors. However, inorganic detectors suffer from very high production costs, brittleness, huge equipment requirements, and low responsivity. Here, we propose for the first time aneasy processable, reproducible, and low-cost hybrid UV mem-sensor. Composites with aligned ZnO MWs produce giant photocurrentscompared to the same composites with randomly distributed MWs. In particular, we efficiently exploit a mem-response where the photocurrent carries memory of the last electronic state experienced by the device when under testing. Furthermore, we demonstrate the non-equivalence of different wave profiles used during thedielectrophoresis: a pulsed wave is able to induce order in both the axis and the orientation of the MWs, whereas a sine wave only affects the orientation.

Electronic Supplementary Material

Download File(s)
12274_2014_705_MOESM1_ESM.pdf (3.8 MB)

References

1

Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. -E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395-4398.

2

Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S. -J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 2005, 98, 041301.

3

Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H.; Xu, H. F. Complex and oriented ZnO nanostructures. Nat. Mater. 2003, 2, 821-826.

4

Wilson, S. A.; Jourdain, R. P. J.; Zhang, Q.; Dorey, R. A.; Bowen, C. R.; Willander, M.; UlWahab, Q.; Al-hilli, S. M.; Nur, O. et al. New materials for micro-scale sensors and actuators: An engineering review. Mat. Sci. Eng. : R: Reports 2007, 56, 1-129.

5

Bahnemann, D. W.; Kormann, C.; Hoffmann, M. R. Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J. Phys. Chem. 1987, 91, 3789-3798.

6

Gomez, J. L.; Tigli, O. Zinc oxide nanostructures: From growth to application. J. Mater. Sci. 2013, 48, 612-624.

7

Xu, S.; Wang, Z. L. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Res. 2011, 4, 1013-1098.

8

Cauda, V.; Gazia, R.; Porro, S.; Stassi, S.; Canavese, G.; Roppolo, I.; Chiolerio, A. Nanostructured ZnO materials: Synthesis, properties and applications. In Handbook of Nanomaterial Properties. Bhushan, B.; Luo, D.; Schricker, S. R.; Sigmund, W.; Zauscher, S., Eds.; Springer: Berlin, 2014; pp 137-177.

9

Ottone, C.; Stassi, S.; Motto, P.; Laurenti, M.; Demarchi, D.; Cauda, V. ZnO nanowires: Synthesis approaches and electrical properties. In Nanowires: Synthesis, Electrical Properties and Uses in Biological Systems. Wilson, L. J., Eds.; Nova Science Publishers: New York, 2014; pp 1-58.

10

Espinosa, H. D.; Bernal, R. A.; Minary-Jolandan, M. A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 2012, 24, 4656-4675.

11

Hernández, S.; Cauda, V.; Chiodoni, A.; Dallorto, S.; Sacco, A.; Hidalgo, D.; Celasco, E.; Pirri, C. F. Optimization of 1D ZnO@TiO2 core-shell nanostructures for enhanced photoelectrochemical water splitting under solar light illumination. ACS Appl. Mater. Interfaces 2014, 6, 12153-12167.

12

Zhang, Y.; Yan, X.; Yang, Y.; Huang, Y. H.; Liao, Q. L.; Qi, J. J. Scanning probe study on the piezotroniceffect in ZnOnanomaterials and nanodevices. Adv. Mater. 2012, 24, 4647-4655.

13

Zhang, Y.; Liu, Y.; Wang, Z. L. Fundamental theory of piezotronics. Adv. Mater. 2011, 23, 3004-3013.

14

Xu, S. G.; Guo, W. H.; Du, S. W.; Loy, M. M. T.; Wang, N. Piezotroniceffects on the optical properties of ZnO nanowires. Nano Lett. 2012, 12, 5802-5807.

15

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.

16

He, Y. N.; Zhang, W.; Zhang, S. C.; Kang, X.; Peng, W. B.; Xu, Y. L. Study of the photoconductive ZnO UV detector based on the electrically floated nanowire array. Sens. Actuators, A2012, 181, 6-12.

17

Jin, Y. Z.; Wang, J. P.; Sun, B. Q.; Blakesley, J. C.; Greenham, N. C. Solution-processed ultraviolet photodetectorsbased on colloidal ZnO nanoparticles. Nano Lett. 2008, 8, 1649-1653.

18

Lao, C. S.; Park, M. -C.; Kuang, Q.; Deng, Y. L.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization. J. Am. Chem. Soc. 2007, 129, 12096-12097.

19

Guo, F. W.; Yang, B.; Yuan, Y. B.; Xiao, Z. G.; Dong, Q. F.; Bi, Y.; Huang, J. S. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection. Nat. Nanotechnol. 2012, 7, 798-802.

20

Wang, D. Q.; Zhu, R.; Zhou, Z. Y.; Ye, X. Y. Controlled assembly of zinc oxide nanowires using dielectrophoresis. Appl. Phys. Lett. 2007, 90, 103110.

21

Kwok, H. L. Modeling negative capacitance effect in organic polymers. Solid-State Electron. 2003, 47, 1089-1093.

22

Bocchini, S.; Chiolerio, A.; Porro, S.; Accardo, D.; Garino, N.; Bejtka, K.; Perrone, D.; Pirri, C. F. Synthesis of polyaniline-based inks, doping thereof and test device printing towards electronic applications. J. Mater. Chem. C 2013, 1, 5101-5109.

23

Chiolerio, A.; Bocchini, S.; Porro, S. Inkjet printed negative supercapacitors: Synthesis of polyaniline-based inks, doping agent effect, and advanced electronic devices applications. Adv. Funct. Mater. 2014, 24, 3375-3383.

24

Son, D. I.; You, C. H.; Kim, W. T.; Jung, J. H.; Kim, T. W. Electrical bistabilities and memory mechanisms of organic bistable devices based on colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 2009, 94, 132103.

25

Son, D. I.; You, C. H.; Jung, J. H.; Kim, T. W. Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites. Appl. Phys. Lett. 2010, 97, 013304.

26

Sah, M. P.; Hyongsuk, K.; Chua, L. O. Brains are made of memristors. IEEE Circuits and Systems Magazine 2014, 14, 12-36.

27

Fan, Z.; Fan, X. D.; Li, A.; Dong, L. X. Nanorobotic in situ characterization of nanowires memristors and "memsensing". In IEEE/RSJ International Conference on Intelligent Robots and Systems (BS2013), Tokyo, Japan, 2013, pp 1028-1033.

28

Wang, X. B.; Chen, Y. R.; Gu, Y.; Li, H. Spintronicmemristortemperature sensor. IEEE Electron Device Lett. 2010, 31, 20-22.

29

Yang, Y.; Guo, W.; Pradel, K. C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z. L. Pyroelectricnanogenerators for harvesting thermoelectric energy. Nano Lett. 2012, 12, 2833-2838.

Nano Research
Pages 1956-1963
Cite this article:
Chiolerio A, Roppolo I, Cauda V, et al. Ultraviolet mem-sensors: flexible anisotropic composites featuring giant photocurrent enhancement. Nano Research, 2015, 8(6): 1956-1963. https://doi.org/10.1007/s12274-014-0705-2

641

Views

26

Crossref

N/A

Web of Science

25

Scopus

0

CSCD

Altmetrics

Received: 14 October 2014
Revised: 17 December 2014
Accepted: 22 December 2014
Published: 14 March 2015
© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return