Journal Home > Volume 8 , Issue 6

A multifunctional, dual-drug carrier platform was successfully constructed. Core-shell structured NaGdF4: Yb/Er@NaGdF4: Yb@mSiO2-polyethylene glycol (abbreviated as UCNPS) nanoparticles loaded with the antitumor drug, doxorubicin (DOX) were incorporated into poly(ε-caprolactone) (PCL) and gelatin loaded with antiphlogistic drug, indomethacin (MC) to form nanofibrous fabrics (labeled as MC/UCNPS/DOX) via electrospinning process. The resultant multifunctional spinning pieces can be surgically implanted directly at the tumor site of mice as an orthotopic chemotherapy by controlled-release DOX from mesoporous silicon dioxide (SiO2) and upconversion fluorescence/magnetic resonance dual-model imaging through NaGdF4: Yb/Er@NaGdF4: Yb embedded in MC/UCNPS/DOX in vivo.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo

Show Author's information Yinyin Chen1,2Shi Liu2,3Zhiyao Hou1Pingan Ma1Dongmei Yang1,2Chunxia Li1( )Jun Lin1( )
State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130024China
University of the Chinese Academy of SciencesBeijing100049China
State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130024China

Abstract

A multifunctional, dual-drug carrier platform was successfully constructed. Core-shell structured NaGdF4: Yb/Er@NaGdF4: Yb@mSiO2-polyethylene glycol (abbreviated as UCNPS) nanoparticles loaded with the antitumor drug, doxorubicin (DOX) were incorporated into poly(ε-caprolactone) (PCL) and gelatin loaded with antiphlogistic drug, indomethacin (MC) to form nanofibrous fabrics (labeled as MC/UCNPS/DOX) via electrospinning process. The resultant multifunctional spinning pieces can be surgically implanted directly at the tumor site of mice as an orthotopic chemotherapy by controlled-release DOX from mesoporous silicon dioxide (SiO2) and upconversion fluorescence/magnetic resonance dual-model imaging through NaGdF4: Yb/Er@NaGdF4: Yb embedded in MC/UCNPS/DOX in vivo.

Keywords: treatment, controlled release, electrospinning orthotopic, multiple structure

References(49)

1

Cha, C. H.; Saif, M. W.; Yamane, B. H.; Weber, S. M. Hepatocellular carcinoma: Current management. Curr. Prob. Surg. 2010, 47, 10-67.

2

Toshkovaa, R.; Manolovab, N.; Gardevaa, E.; Ignatovab, M.; Yossifovaa, L.; Rashkovb, I.; Alexandrov, M. Antitumor actinity of quaternized chitosan-based electrospun implants against graffi myeloid tumor. Int. J. Pharm. 2010, 400, 221-233.

3

Yang, J. Stimuli-responsive drug delivery systems. Adv. Drug Deliver. Rev. 2012, 64, 965-966.

4

Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991-1003.

5

Zhang, Y.; Qian, J.; Wang, D.; Wang, Y. L.; He, S. L. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew. Chem. Int. Ed. 2013, 52, 1148-1151.

6

Barreto, J. A.; O'Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imagingand therapy. Adv. Mater. 2011, 23, H18-H40.

7

Yu, M. H.; Jambhrunkar, S.; Thorn, P.; Chen, J.; Gu, W.; Yu, C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 2013, 5, 178-183.

8

Hoffman, A. S. The origins and evolution of "controlled" drug delivery systems. J. Controlled Release 2008, 132, 153-163.

9

Reneker, D. H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216-223.

10

Charernsriwilaiwat, N.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int. J. Pharm. 2012, 427, 379-384.

11

Hou, Z. Y.; Li, X. J.; Li, C. X.; Dai, Y. L.; Ma, P. A.; Zhang, X.; Kang, X. J.; Cheng, Z. Y.; Lin, J. Electrospun up conversion composite fibers as dual drugs delivery system with individual release properties. Langmuir 2013, 29, 9473-9482.

12

Hou, Z. Y.; Li, C. X.; Ma, P. A.; Cheng, Z. Y.; Li, X. J.; Zhang, X. Dai, Y. L.; Yang, D. M.; Lian, H. Z.; Lin, J. Up-conversion luminescent and porous NaYF4: Yb3+, Er3+@SiO2nanocompositefibers for anti-cancer drug delivery and cell imaging. Adv. Funct. Mater. 2012, 22, 2713-2722.

13

Kenawy, E. R.; Bowlin, G. L.; Mansfield, K.; Layman, J.; Simpson, D. G.; Sanders, E. H.; Wnek, G. E. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release 2002, 81, 57-64.

14

Luu, Y. K.; Kim, K.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Development of a nanostructured DNA deliveryscaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release 2003, 89, 341-353.

15

Huang, C. B.; Soenen, S. J.; van Gulck, E.; Vanham, G.; Rejman, J.; van Calenbergh, S.; Vervaet, C.; Coenye, T.; Verstraelen, H.; Temmerman, M. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials 2012, 33, 962-969.

16

Wang, P.; Wang, Y. P.; Tong, L. M. Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale. Light: Sci. Appl. 2013, 2, e102.

17

Kuo, T.; Lai, W. Y.; Li, C. H.; Wun, Y.; Chang, H. C.; Chen, J.; Yang, P.; Chen, C. AS1411 aptamer-conjugated Gd2O3: Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res. 2014, 7, 658-669.

18

Ju, Q.; Tu, D. T.; Liu, Y. S.; Li, R. F.; Zhu, H. M.; Chen, J. C.; Chen, Z.; Huang, M. D.; Chen, X. Y. Amine-functionalized lanthanide-doped KGdF4nanocrystals as potential optical/magnetic multimodal bioprobes. J. Am. Chem. Soc. 2012, 134, 1323-1330.

19

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266-3271.

20

Fang, S.; Wang, C.; Xiang, J.; Cheng, L.; Song, X. J.; Xu, L. G.; Peng, R.; Liu, Z. Aptamer-conjugated upconversion nanoprobes assistedby magnetic separation for effective isolation andsensitive detection of circulating tumor cells. Nano Res. 2014, 7, 1327-1336.

21

Tu, D. T.; Liu, L. Q.; Ju, Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6306-6310.

22

Tu, D. T.; Zheng, W.; Liu, Y. S.; Zhu, H. M.; Chen, X. Y. Luminescent biodetectionbased on lanthanide-doped inorganic nanoprobes. Coord. Chem. Rev. 2014, 273, 13-29.

23

Liu, J. N.; Bu, J. W.; Bu, W.; Zhang, S. J.; Pan, L. M.; Fan, W. P. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem. Int. Ed. 2014, 53, 4551-4555.

24

Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323-1349.

25

Louie, A. Y. Multimodality imaging probes: Design and challenges. Chem. Rev. 2010, 110, 3146-3195.

26

Wang, C.; Cheng, L.; Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317-330.

27

Shan, G. B.; Weissleder, R.; Hilderbrand, S. A. Upconverting organic dye doped core-shellnano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics 2013, 3, 267-274.

28

Li, X. M.; Zhao, D. Y.; Zhang, F. Multifunctional upconversion-magnetic hybrid nanostructured materials: Synthesis and bioapplications. Theranostics 2013, 3, 292-305.

29

Debasu, M. L.; Ananias, D.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Rocha, J.; Carlos, L. D. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2, 000 K based on Er3+ emission and blackbody radiation. Adv. Mater. 2013, 25, 4868-4874.

30

Li, C. X.; Hou, Z. Y.; Dai, Y. L.; Yang, D. M.; Cheng, Z. Y.; Ma, P. A. A facile fabrication of upconversionluminescent and mesoporouscore-shell structured β-NaYF4: Yb3+, Er3+@mSiO2nanocompositespheres for anti-cancer drug delivery and cell imaging. Biomater. Sci. 2013, 1, 213-223.

31

Li, C. X.; Yang, D. M.; Ma, P. A.; Chen, Y. Y.; Wu, Y.; Hou, Z. Y. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 2013, 9, 4150-4159.

32

Zhang, X.; Yang, P. P.; Dai, Y. L.; Ma, P. A.; Li, X. J.; Cheng, Z. Y. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 2013, 23, 4067-4078.

33

Janes, K. A.; Fresneau, M. P.; Marazuela, A.; Fabra, A.; Alonso, M. J. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release 2001, 73, 255-267.

34

Chen, Y. Y.; Ma, P. A.; Yang, D. M.; Wu, Y.; Dai, Y. L.; Li, C. X. Multifunctional core-shell structured nanocarriers for synchronous tumor diagnosis and treatment in vivo. Chem. Asian J. 2014, 9, 506-513.

35

Luo, X. M.; Xie, C. Y.; Wang, H.; Liu, C.; Yan, S.; Li, X. Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. Int. J. Pharm. 2012, 425, 19-28.

36

Cheng, L.; Yang, K.; Shao, M. W.; Lu, X.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine 2011, 6, 1327-1340.

37

Xiong, L.; Yang, T.; Yang, Y.; Xu, C.; Li, F. Long-term in vivo biodistributionimaging and toxicity of polyacrylicacid-coated upconversionnanophosphors. Biomaterials 2010, 31, 7078-7085.

38

Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Accounts. Chem. Res. 2011, 44, 322-332.

39

Meek, M. F.; Coert, J. H. US food and drug administration/conformiteurope-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann. Plast. Surg. 2008, 60, 466-472.

40

Kai, D.; Prabhakaran, M. P.; Stahl, B.; Eblenkamp, M.; Wintermantel, E.; Ramakrishna, S. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012, 23, 095705.

41

Hong, Y.; Huber, A.; Takanari, K.; Amoroso, N. J.; Hashizume, R.; Badylak, S. F.; Wagner, W. R. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 2011, 32, 3387-3394.

42

Chong, E. J.; Phan, T. T.; Lim, I. J.; Zhang, Y. Z.; Bay, B. H.; Ramakrishna, S. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta. Biomater. 2007, 3, 321-330.

43

Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Ramakrishna, S. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008, 29, 4532-4539.

44

Gautam, S.; Chou, C. F.; Dinda, A. K.; Potdar, P. D.; Mishra, N. C. Fabrication and characterization of PCL/Gelatin/Chitosan ternarynanofibrouscomposite scaffold for tissue engineering applications. J. Mater. Sci. 2014, 49, 1076-1089.

45

Tang, S. H.; Huang, X. Q.; Chen, X. L.; Zheng, N. F. Hollow mesoporouszirconia nanocapsules for drug delivery. Adv. Funct. Mater. 2010, 20, 2442-2447.

46

Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 2011, 50, 7385-7390.

47

Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporoussilica nanoparticles. Adv. Mater. 2013, 25, 3144-3176.

48

Kai, D.; Prabhakaran, M. P.; Stahl, B.; Eblenkamp, M.; Wintermantel, E.; Ramakrishna, S. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012, 23, 095705.

49

Hong, Y.; Huber, A.; Takanari, K.; Amoroso, N. J.; Hashizume, R.; Badylak, S. F. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybridscaffold. Biomaterials 2011, 32, 3387-3394.

File
12274_2014_701_MOESM1_ESM.pdf (596.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 October 2014
Revised: 15 December 2014
Accepted: 18 December 2014
Published: 23 March 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This project is financially supported by the National Natural Science Foundation of China (NSFC, Nos. 51332008, 51372243, 51422209, and 51202239), the National Basic Research Program of China (No. 2014CB643803).

Return