Journal Home > Volume 8 , Issue 6

By analyzing phonon dispersion, we have evaluated the average Young's modulus and Poisson's ratio in graphite and in graphene grown on Ru(0001), Pt(111), Ir(111), Ni(111), and BC3/NbB2(0001). In both flat and corrugated graphene sheets and in graphite, we find a Poisson's ratio of 0.19 and a Young's modulus of 342 N/m. The unique exception is graphene/Ni(111), for which we find different values because of the stretching of C-C bonds occurring in the commensurate overstructure (0.36 and 310 N/m for the Poisson's ratio and Young's modulus, respectively). Such findings are in excellent agreement with calculations performed for a free-standing graphene membrane. The high crystalline quality of graphene grown on metal substrates leads to macroscopic samples with high tensile strength and bending flexibility for use in technological applications such as electromechanical devices and carbon-fiber reinforcements.


menu
Abstract
Full text
Outline
About this article

Probing the Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: a comparative study

Show Author's information Antonio Politano1( )Gennaro Chiarello1,2
Dipartimento di FisicaUniversità della CalabriaRende (CS)87036Italy
Consorzio Nazionale Interuniversitario per le Scienze Fisiche della Materia (CNISM)Via della Vasca Navale84 00146Roma Italy

Abstract

By analyzing phonon dispersion, we have evaluated the average Young's modulus and Poisson's ratio in graphite and in graphene grown on Ru(0001), Pt(111), Ir(111), Ni(111), and BC3/NbB2(0001). In both flat and corrugated graphene sheets and in graphite, we find a Poisson's ratio of 0.19 and a Young's modulus of 342 N/m. The unique exception is graphene/Ni(111), for which we find different values because of the stretching of C-C bonds occurring in the commensurate overstructure (0.36 and 310 N/m for the Poisson's ratio and Young's modulus, respectively). Such findings are in excellent agreement with calculations performed for a free-standing graphene membrane. The high crystalline quality of graphene grown on metal substrates leads to macroscopic samples with high tensile strength and bending flexibility for use in technological applications such as electromechanical devices and carbon-fiber reinforcements.

Keywords: graphene, Young's modulus, Poisson's ration, elastic properties

References(76)

1

Zhang, Y. Y.; Wang, C. M.; Cheng, Y.; Xiang, Y. Mechanical properties of bilayer graphene sheets coupled by sp3 bonding. Carbon 2011, 49, 4511-4517.

2

Park, S.; An, J.; Suk, J. W.; Ruoff, R. S. Graphene-based actuators. Small 2010, 6, 210-212.

3

Wang, Y.; Yang, R.; Shi, Z. W.; Zhang, L. C.; Shi, D. X.; Wang, E.; Zhang, G. Y. Super-elastic graphene ripples for flexible strain sensors. ACS Nano 2011, 5, 3645-3650.

4

Scharfenberg, S.; Rocklin, D. Z.; Chialvo, C.; Weaver, R. L.; Goldbart, P. M.; Mason, N. Probing the mechanical properties of graphene using a corrugated elastic substrate. Appl. Phys. Lett. 2011, 98, 091908.

5

Alzari, V.; Sanna, V.; Biccai, S.; Caruso, T.; Politano, A.; Scaramuzza, N.; Sechi, M.; Nuvoli, D.; Sanna, R.; Mariani, A. Tailoring the physical properties of nanocomposite films by the insertion of graphene and other nanoparticles. Composites Part B: Engineering 2014, 60, 29-35.

6

Li, D. S.; Windl, W.; Padture, N. P. Toward site-specific stamping of graphene. Adv. Mater. 2009, 21, 1243-1246.

7

Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J. et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 2009, 8, 203-207.

8

Borca, B.; Barja, S.; Garnica, M.; Minniti, M.; Politano, A.; Rodriguez-García, J. M.; Hinarejos, J. J.; Farías, D.; de Parga, A. L. V.; Miranda, R. Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001). New J. Phys. 2010, 12, 093018.

9

Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Highly ordered millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777-2780.

10

Sutter, P. W.; Albrecht, P. M.; Sutter, E. A. Graphene growth on epitaxial Ru thin films on sapphire. Appl. Phys. Lett. 2010, 97, 213101.

11

Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; van den Brink, J.; Kelly, P. J. Doping graphene with metal contacts. Phys. Rev. Lett. 2008, 101, 026803.

12

Politano, A.; Chiarello, G. Quenching of plasmons modes in air-exposed graphene-Ru contacts for plasmonic devices. Appl. Phys. Lett. 2013, 102, 201608.

13

Politano, A.; Chiarello, G. Unravelling suitable graphene-metal contacts for graphene-based plasmonic devices. Nanoscale 2013, 5, 8215-8220.

14

Politano, A.; Marino, A. R.; Formoso, V.; Farías, D.; Miranda, R.; Chiarello, G. Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111). Phys. Rev. B 2011, 84, 033401.

15

Dedkov, Y. S.; Fonin, M.; Laubschat, C. A possible source of spin-polarized electrons: the inert graphene/Ni(111) system. Appl. Phys. Lett. 2008, 92, 052506.

16

Politano, A.; Borca, B.; Minniti, M.; Hinarejos, J. J.; de Parga, A. L. V.; Farías, D.; Miranda, R. Helium reflectivity and Debye temperature of graphene grown epitaxially on Ru(0001). Phys. Rev. B 2011, 84, 035450.

17

Pletikosić, I.; Kralj, M.; Pervan, P.; Brako, R.; Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Dirac cones and minigaps for graphene on Ir(111). Phys. Rev. Lett. 2009, 102, 056808.

18

Sicot, M.; Bouvron, S.; Zander, O.; Rudiger, U.; Dedkov, Y. S.; Fonin, M. Nucleation and growth of nickel nanoclusters on graphene Moiré on Rh(111). Appl. Phys. Lett. 2010, 97, 079901.

19

Kwon, S. Y.; Ciobanu, C. V.; Petrova, V.; Shenoy, V. B.; Bareño, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Growth of semiconducting graphene on palladium. Nano Lett. 2009, 9, 3985-3990.

20

Miniussi, E.; Pozzo, M.; Baraldi, A.; Vesselli, E.; Zhan, R. R.; Comelli, G.; Menteş, T. O.; Niño, M. A.; Locatelli, A.; Lizzit, S. et al. Thermal stability of corrugated epitaxial graphene grown on Re(0001). Phys. Rev. Lett. 2011, 106, 216101.

21

Reddy, K. M.; Gledhill, A. D.; Chen, C. H.; Drexler, J. M.; Padture, N. P. High quality, transferrable graphene grown on single crystal Cu(111) thin films on basal-plane sapphire. Appl. Phys. Lett. 2011, 98, 113117.

22

Eom, D.; Prezzi, D.; Rim, K. T.; Zhou, H.; Lefenfeld, M.; Xiao, S.; Nuckolls, C.; Hybertsen, M. S.; Heinz, T. F.; Flynn, G. W. Structure and Electronic Properties of Graphene Nanoislands on Co(0001). Nano Lett. 2009, 9, 2844-2848.

23

Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C. Atomic structure of monolayer graphite formed on Ni(111). Surf. Sci. 1997, 374, 61-64.

24

Wang, B.; Günther, S.; Wintterlin, J.; Bocquet, M. L. Periodicity, work function and reactivity of graphene on Ru(0001) from first principles. New J. Phys. 2010, 12, 043041.

25

Politano, A.; Campi, D.; Formoso, V.; Chiarello, G. Evidence of confinement of the π plasmon in periodically rippled graphene on Ru(0001). Phys. Chem. Chem. Phys. 2013, 15, 11356-11361.

26

Politano, A.; Chiarello, G. Periodically rippled graphene on Ru(0001): A template for site-selective adsorption of hydrogen dimers via water splitting and hydrogen-spillover at room temperature. Carbon 2013, 61, 412-417.

27

Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

28

Cupolillo, A.; Ligato, N.; Caputi, L. S. Two-dimensional character of the interface-π plasmon in epitaxial graphene on Ni(111). Carbon 2012, 50, 2588-2591.

29

Cazzanelli, E.; Caruso, T.; Castriota, M.; Marino, A. R.; Politano, A.; Chiarello, G.; Giarola, M.; Mariotto, G. Spectroscopic characterization of graphene films grown on Pt(111) surface by chemical vapor deposition of ethylene. J. Raman Spectrosc. 2013, 44, 1393-1397.

30

Gao, M.; Pan, Y.; Huang, L.; Hu, H.; Zhang, L. Z.; Guo, H. M.; Du, S. X.; Gao, H. J. Epitaxial growth and structural property of graphene on Pt(111). Appl. Phys. Lett. 2011, 98, 033101.

31

Odahara, G.; Otani, S.; Oshima, C.; Suzuki, M.; Yasue, T.; Koshikawa, T. Macroscopic single-domain graphene sheet on Ni(111). Surf. Interface Anal. 2011, 43, 1491-1493.

32

Starodub, E.; Bostwick, A.; Moreschini, L.; Nie, S.; Gabaly, F. E.; McCarty, K. F.; Rotenberg, E. In-plane orientation effects on the electronic structure, stability, and Raman scattering of monolayer graphene on Ir(111). Phys. Rev. B 2011, 83, 125428.

33

Liang, Z.; Khosravian, H.; Uhl, A.; Meyer, R. J.; Trenary, M. Graphene domain boundaries on Pt(111) as nucleation sites for Pt nanocluster formation. Surf. Sci. 2012, 606, 1643-1648.

34

Politano, A.; Marino, A. R.; Formoso, V.; Farías, D.; Miranda, R.; Chiarello, G. Quadratic dispersion and damping processes of π plasmon in monolayer graphene on Pt(111). Plasmonics 2012, 7, 369-376.

35

Rocca, M. Low-energy EELS investigation of surface electronic excitations on metals. Surf. Sci. Rep. 1995, 22, 1-71.

36

Politano, A.; Formoso, V.; Colavita, E.; Chiarello, G. Probing collective electronic excitations in as-deposited and modified Ag thin films grown on Cu(111). Phys. Rev. B 2009, 79, 045426.

37

Ibach, H.; Mills, D. L. Electron Energy Loss Spectroscopy and Surface Vibrations; Academic Press: San Francisco, 1982.

DOI
38

Allard, A.; Wirtz, L. Graphene on metallic substrates: Suppression of the Kohn anomalies in the phonon dispersion. Nano Lett. 2010, 10, 4335-4340.

39

Sánchez-Portal, D.; Artacho, E.; Soler, J. M.; Rubio, A.; Ordejón, P. Ab initio structural, elastic, and vibrational properties of carbon nanotubes. Phys. Rev. B 1999, 59, 12678.

40

Blakslee, O. L.; Proctor, D. G.; Seldin, E. J.; Spence, G. B.; Weng, T. Elastic constants of compression-annealed pyrolytic graphite. J. Appl. Phys. 1970, 41, 3373-3382.

41

Seldin, E. J.; Nezbeda, C. W. Elastic constants and electron-microscope observations of neutron-irradiated compression-annealed pyrolytic and single-crystal graphite. J. Appl. Phys. 1970, 41, 3389-3400.

42

Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297-1300.

43

Jiang, J. W.; Wang, J. S.; Li, B. Young's modulus of graphene: A molecular dynamics study. Phys. Rev. B 2009, 80, 113405.

44

Adamyan, V.; Zavalniuk, V. Phonons in graphene with point defects. J. Phys. : Condens. Matt. 2011, 23, 015402.

45

Zakharchenko, K. V.; Katsnelson, M. I.; Fasolino, A. Finite temperature lattice properties of graphene beyond the quasiharmonic approximation. Phys. Rev. Lett. 2009, 102, 046808.

46

Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I. C2F, BN, and C nanoshell elasticity from ab initio computations. Phys. Rev. B 2001, 64, 235406.

47

Arghavan, S.; Singh, A. V. Free vibration of single layer graphene sheets: Lattice structure versus continuum plate theories. J. Nanotechnol. Eng. Med. 2011, 2, 031005-031006.

48

Bera, S.; Arnold, A.; Evers, F.; Narayanan, R.; Wölfle, P. Elastic properties of graphene flakes: Boundary effects and lattice vibrations. Phys. Rev. B 2010, 82, 195445.

49

Cadelano, E.; Palla, P. L.; Giordano, S.; Colombo, L. Elastic properties of hydrogenated graphene. Phys. Rev. B 2010, 82, 235414.

50

Gui, G.; Li, J.; Zhong, J. X. Band structure engineering of graphene by strain: First-principles calculations. Phys. Rev. B 2008, 78, 075435.

51

Peng, Q.; Liang, C.; Ji, W.; De, S. A theoretical analysis of the effect of the hydrogenation of graphene to graphane on its mechanical properties. Phys. Chem. Chem. Phys. 2013, 15, 2003-2011.

52

Fair, K. M.; Arnold, M. D.; Ford, M. J. Determination of the elastic properties of graphene by indentation and the validity of classical models of indentation. J. Phys. : Condens. Matter 2014, 26, 015307.

53

Liu, F.; Ming, P.; Li, J. Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys. Rev. B 2007, 76, 064120.

54

Wang, R.; Wang, S.; Wu, X.; Liang, X. First-principles calculations on third-order elastic constants and internal relaxation for monolayer graphene. Physica B 2010, 405, 3501-3506.

55

Perebeinos, V.; Tersoff, J. Valence force model for phonons in graphene and carbon nanotubes. Phys. Rev. B 2009, 79, 241409.

56

Wagner, P.; Ivanovskaya, V. V.; Rayson, M. J.; Briddon, P. R.; Ewels, C. P. Mechanical properties of nanosheets and nanotubes investigated using a new geometry independent volume definition. J. Phys. : Condens. Matter 2013, 25, 155302.

57

Scarpa, F.; Adhikari, S.; Srikantha Phani, A. Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 2009, 20, 065709.

58

Kalosakas, G.; Lathiotakis, N. N.; Galiotis, C.; Papagelis, K. In-plane force fields and elastic properties of graphene. J. Appl. Phys. 2013, 113, 134307.

59

Michel, K. H.; Verberck, B. Theory of the elastic constants of graphite and graphene. Phys. Status Solidi B 2008, 245, 2177-2180.

60

Cadelano, E.; Palla, P. L.; Giordano, S.; Colombo, L. Nonlinear elasticity of monolayer graphene. Phys. Rev. Lett. 2009, 102, 235502.

61

Zhou, G.; Duan, W.; Gu, B. First-principles study on morphology and mechanical properties of single-walled carbon nanotube. Chem. Phys. Lett. 2001, 333, 344-349.

62

Kam, K.; Scarpa, F.; Adhikari, S.; Chowdhury, R. Graphene nanofilm as pressure and force sensor: A mechanical analysis. Phys. Status Solidi B 2013, 250, 2085-2089.

63

Arroyo, M.; Belytschko, T. Finite crystal elasticity of carbon nanotubes based on the exponential Cauchy-Born rule. Phys. Rev. B 2004, 69, 115415.

64

Wang, C. G.; Lan, L.; Liu, Y. P.; Tan, H. F. Multiple component correlation model for elastic modulus of single layer graphene sheets. Physica E 2014, 56, 372-376.

65

Zhou, L. X.; Wang, Y. G.; Cao, G. X. Elastic properties of monolayer graphene with different chiralities. J. Phys. : Condens. Matter 2013, 25, 125302.

66

Zhou, J.; Huang, R. Internal lattice relaxation of single-layer graphene under in-plane deformation. J. Mech. Phys. Solids 2008, 56, 1609-1623.

67

Otero, G.; Gonzalez, C.; Pinardi, A. L.; Merino, P.; Gardonio, S.; Lizzit, S.; Blanco-Rey, M.; Van de Ruit, K.; Flipse, C. F. J.; Méndez, J. et al. Ordered vacancy network induced by the growth of epitaxial graphene on Pt(111). Phys. Rev. Lett. 2010, 105, 216102.

68

Gao, M.; Pan, Y.; Zhang, C.; Hu, H.; Yang, R.; Lu, H.; Cai, J.; Du, S.; Liu, F.; Gao, H. J. Tunable interfacial properties of epitaxial graphene on metal substrates. Appl. Phys. Lett. 2010, 96, 053109.

69

Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552.

70

Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637-640.

71

Lee, G. H.; Cooper, R. C.; An, S. J.; Lee, S.; van der Zande, A.; Petrone, N.; Hammerberg, A. G.; Lee, C.; Crawford, B.; Oliver, W. et al. High-strength chemical-vapor-deposited graphene and grain boundaries. Science 2013, 340, 1073-1076.

72

Clark, N.; Oikonomou, A.; Vijayaraghavan, A. Ultrafast quantitative nanomechanical mapping of suspended graphene. Phys. Status Solidi B 2013, 250, 2672-2677.

73

Reddy, C. D.; Ramasubramaniam, A.; Shenoy, V. B.; Zhang, Y. W. Edge elastic properties of defect-free single-layer graphene sheets. Appl. Phys. Lett. 2009, 94, 101904.

74

Ruiz-Vargas, C. S.; Zhuang, H. L.; Huang, P. Y.; van der Zande, A. M.; Garg, S.; McEuen, P. L.; Muller, D. A.; Hennig, R. G.; Park, J. Softened elastic response and unzipping in chemical vapor deposition graphene membranes. Nano Lett. 2011, 11, 2259-2263.

75

Klintenberg, M.; Lebègue, S.; Ortiz, C.; Sanyal, B.; Fransson, J.; Eriksson, O. Evolving properties of two-dimensional materials: from graphene to graphite. J. Phys. : Condens. Matter 2009, 21, 335502.

76

Yanagisawa, H.; Tanaka, T.; Ishida, Y.; Matsue, M.; Rokuta, E.; Otani, S.; Oshima, C. Analysis of phonons in graphene sheets by means of HREELS measurement and ab initio calculation. Surf. Interface Anal. 2005, 37, 133-136.

Publication history
Copyright

Publication history

Received: 27 October 2014
Revised: 03 December 2014
Accepted: 10 December 2014
Published: 28 April 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015
Return