Journal Home > Volume 8 , Issue 6

Visible-light-initiated organic transformations have received much attention because of low cost, relative safety, and environmental friendliness. In this work, we report on a novel type of visible-light-driven photocatalysts, namely, porous nanocomposites of CdS-nanoparticle-decorated metal-organic frameworks (MOF), prepared by a simple solvothermal method in which porous MIL-100(Fe) served as the support and cadmium acetate (Cd(Ac)2) as the CdS precursor. When the selective oxidation of benzyl alcohol to benzaldehyde is used as the probe reaction, the results show that the combination of MIL-100(Fe) and CdS semiconductor can remarkably enhance the photocatalytic efficiency at room temperature, as compared to that of pure CdS. The enhanced photocatalytic performance can be attributed to the combined effects of enhanced light absorption, more efficient separation of photogenerated electron-hole pairs, and increased surface area of CdS due to the presence of MIL-100(Fe). This work demonstrates that MOF-based composite materials hold great promise for applications in the field of solar-energy conversion into chemical energy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile fabrication of CdS-metal-organic framework nanocomposites with enhanced visible-light photocatalytic activity for organic transformation

Show Author's information Fei Ke1,2Luhuan Wang1Junfa Zhu1( )
National Synchrotron Radiation Laboratory and Collaborative Innovation Center of Suzhou Nano Science and TechnologyUniversity of Science and Technology of ChinaHefei230029China
Department of Applied ChemistryAnhui Agricultural UniversityHefei230036China

Abstract

Visible-light-initiated organic transformations have received much attention because of low cost, relative safety, and environmental friendliness. In this work, we report on a novel type of visible-light-driven photocatalysts, namely, porous nanocomposites of CdS-nanoparticle-decorated metal-organic frameworks (MOF), prepared by a simple solvothermal method in which porous MIL-100(Fe) served as the support and cadmium acetate (Cd(Ac)2) as the CdS precursor. When the selective oxidation of benzyl alcohol to benzaldehyde is used as the probe reaction, the results show that the combination of MIL-100(Fe) and CdS semiconductor can remarkably enhance the photocatalytic efficiency at room temperature, as compared to that of pure CdS. The enhanced photocatalytic performance can be attributed to the combined effects of enhanced light absorption, more efficient separation of photogenerated electron-hole pairs, and increased surface area of CdS due to the presence of MIL-100(Fe). This work demonstrates that MOF-based composite materials hold great promise for applications in the field of solar-energy conversion into chemical energy.

Keywords: metal-organic frameworks, nanocomposites, semiconductors, porous materials, photocatalysis

References(50)

1

Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229-251.

2

Xuan, J.; Xiao, W. J. Visible-light photoredox catalysis. Angew. Chem. Int. Ed. 2012, 51, 6828-6838.

3

Zhang, N.; Ciriminna, R.; Pagliaro, M.; Xu, Y. J. Nanochemistry-derived Bi2WO6 nanostructures: Towards production of sustainable chemicals and fuels induced by visible light. Chem. Soc. Rev. 2014, 43, 5276-5287.

4

Yang, M. Q.; Zhang, N.; Pagliaro, M.; Xu, Y. J. Artificial photosynthesis over graphene-semiconductor composites. Are we getting better? Chem. Soc. Rev. 2014, 43, 8240-8254.

5

Yang, M. Q.; Xu, Y. J. Selective photoredox using graphene-based composite photocatalysts. Phys. Chem. Chem. Phys. 2013, 15, 19102-19118.

6

Sun, S.; Wang, W.; Jiang, D.; Zhang, L.; Li, X.; Zheng, Y.; An, Q. Bi2WO6 quantum dot-intercalated ultrathin montmorillonite nanostructure and its enhanced photocatalytic performance. Nano Res. 2014, 7, 1497-1506.

7

Peng, W.; Li, X. Synthesis of a sulfur-graphene composite as an enhanced metal-free photocatalyst. Nano Res. 2013, 6, 286-292.

8

Zhou, W.; Li, T.; Wang, J.; Qu, Y.; Pan, K.; Xie, Y.; Tian, G.; Wang, L.; Ren, Z.; Jiang, B.; Fu, H. Composites of small Ag clusters confined in the channels of well-ordered mesoporous anatase TiO2 and their excellent solar-light-driven photocatalytic performance. Nano Res. 2014, 7, 731-742.

9

Park, S.; Kim, D.; Lee, C. W.; Seo, S. D.; Kim, H. J.; Han, H. S.; Hong, K. S.; Kim, D. W. Surface-area-tuned, quantum-dot-sensitized heterostructured nanoarchitectures for highly efficient photoelectrodes. Nano Res. 2014, 7, 144-153.

10

Ong, W. J.; Tan, L. L.; Chai, S. P.; Yong, S. T.; Mohamed, A. R. Self-assembly of nitrogen-doped TiO2 with exposed {001} facets on a graphene scaffold as photo-active hybrid nanostructures for reduction of carbon dioxide to methane. Nano Res. 2014, 7, 1528-1547.

11

Zhang, N.; Yang, M. Q.; Tang, Z. R.; Xu, Y. J. Toward improving the graphene-semiconductor composite photoactivity via the addition of metal ions as generic interfacial mediator. ACS Nano. 2014, 8, 623-633.

12

Zhang, N.; Zhang, Y.; Xu, Y. J. Recent progress on graphene-based photocatalysts: Current status and future perspectives. Nanoscale 2012, 4, 5792-5813.

13

Kisch, H. Semiconductor photocatalysis—Mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 2013, 52, 812-847.

14

Liu, J.; Wen, S.; Hou, Y.; Zuo, F.; Beran, G. J. O.; Feng, P. Boron carbides as efficient, metal-free, visible-light-responsive photocatalysts. Angew. Chem. Int. Ed. 2013, 52, 3241-3245.

15

Li, H.; Wang, X.; Xu, J.; Zhang, Q.; Bando, Y.; Golberg, D.; Ma, Y.; Zhai, T. One-dimensional CdS nanostructures: A promising candidate for optoelectronics. Adv. Mater. 2013, 25, 3017-3037.

16

Zhang, Y.; Zhang, N.; Tang, Z. R.; Xu, Y. J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chem. Sci. 2012, 3, 2812-2822.

17

Pan, Z.; Zhang, H.; Cheng, K.; Hou, Y.; Hua, J.; Zhong, X. Highly efficient inverted type-Ⅰ CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 2012, 6, 3982-3991.

18

Zhao, W.; Bai, Z.; Ren, A.; Guo, B.; Wu, C. Sunlight photocatalytic activity of CdS modified TiO2 loaded on activated carbon fibers. Appl. Surf. Sci. 2010, 256, 3493-3498.

19

Li, Q.; Guo, B.; Yu, J.; Ran, J.; Zhang, B.; Yan, H.; Gong, J. R. Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 2011, 133, 10878-10884.

20

Wang, H. H.; Sun, Z. H.; Lu, Q. H.; Zeng, F. W.; Su, D. S. One-pot synthesis of (Au nanorod)-(metal sulfide) core-shell nanostructures with enhanced gas-sensing property. Small 2012, 8, 1167-1172.

21

Zhang, N.; Zhang, Y.; Pan, X.; Fu, X.; Liu, S.; Xu, Y. J. Assembly of CdS nanoparticles on the two-dimensional graphene scaffoldas visible-light-driven photocatalyst for selective organic transformation under ambient conditions. J. Phys. Chem. C 2011, 115, 23501-23511.

22

Zhang, N.; Liu, S.; Fu, X.; Xu, Y. J. Fabrication of coenocytic Pd@CdS nanocomposite as a visible light photocatalyst for selective transformation under mild conditions. J. Mater. Chem. 2012, 22, 5042-5052.

23

Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene-CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103-106.

24

Zhang, N.; Zhang, Y.; Pan, X.; Yang, M. Q.; Xu, Y. J. Constructing ternary CdS-graphene-TiO2 hybrids on the flatland of graphene oxide with enhanced visible-light photoactivity for selective transformation. J. Phys. Chem. C 2012, 116, 18023-18031.

25

Hu, Y.; Gao, X.; Yu, L.; Wang, Y.; Ning, J.; Xu, S.; Lou, X. W. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angew. Chem. Int. Ed. 2013, 52, 5636-5639.

26

Zhou, H. C.; Long, J. R.; Yaghi, O. M. Introduction to metal-organic frameworks. Chem. Rev. 2012, 112, 673-674.

27

Getman, R. B.; Bae, Y. S.; Wilmer, C. E.; Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal-organic frameworks. Chem. Rev. 2012, 112, 703-723.

28

Nagarkar, S. S.; Joarder, B.; Chaudhari, A. K.; Mukherjee, S.; Ghosh, S. K. Highly selective detection of nitro explosives by a luminescent metal-organic framework. Angew. Chem. Int. Ed. 2013, 52, 2881-2885.

29

Horcajada, P.; Gref, R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C. Metal-organic frameworks in biomedicine. Chem. Rev. 2012, 112, 1232-1268.

30

Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Commercial metal-organic frameworks as heterogeneous catalysts. Chem. Commun. 2012, 48, 11275-11288.

31

Wang, C.; Xie, Z.; deKrafft, K. E.; Lin, W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J. Am. Chem. Soc. 2011, 133, 13445-13454.

32

Lin, C. K.; Zhao, D.; Gao, W. Y.; Yang, Z.; Ye, J.; Xu, T.; Ge, Q.; Ma, S.; Liu, D. J. Tunability of band gaps in metal-organic frameworks. Inorg. Chem. 2012, 51, 9039-9044.

33

Khajavi, H.; Gascon, J.; Schins, J. M.; Siebbeles, L. D. A.; Kapteijn, F. Unraveling the optoelectronic and photochemical behaviour of Zn4O-based metal organic frameworks. J. Phys. Chem. C 2011, 115, 12487-12493.

34

Alvaro, M.; Carbonell, E.; Ferrer, B.; Llabrés i Xamena, F. X.; Garcia, H. Semiconductor behaviour of a metal-organic framework (MOF). Chem. Eur. J. 2007, 13, 5106-5112.

35

Llabrés i Xamena, F. X.; Corma, A.; Garcia, H. Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors. J. Phys. Chem. C 2007, 111, 80-85.

36

Kent, C. A.; Liu, D.; Ma, L.; Papanikolas, J. M.; Meyer, T. J.; Lin, W. Light harvesting in microscale metal-organic frameworks by energy migration and interfacial electron transfer quenching. J. Am. Chem. Soc. 2011, 133, 12940-12943.

37

Long, J.; Wang, S.; Ding, Z.; Wang, S.; Zhou, Y.; Huang, L.; Wang, X. Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem. Commun. 2012, 48, 11656-11658.

38

He, J.; Yan, Z.; Wang, J.; Xie, J.; Jiang, L.; Shi, Y.; Yuan, F.; Yu, F.; Sun, Y. Significantly enhanced photocatalytic hydrogen evolution under visible light over CdS embedded on metal-organic frameworks. Chem. Commun. 2013, 49, 6761-6763.

39

Jin, S.; Son, H. J.; Farha, O. K.; Wiederrecht, G. P.; Hupp, J. T. Energy transfer from quantum dots to metal-organic frameworks for enhanced light harvesting. J. Am. Chem. Soc. 2013, 135, 955-958.

40

Esken, D.; Turner, S.; Wiktor, C.; Kalidindi, S. B.; Tendeloo, G. V.; Fischer, R. A. GaN@ZIF-8: Selective formation of gallium nitride quantum dots inside a zinc methylimidazolate framework. J. Am. Chem. Soc. 2011, 133, 16370-16373.

41

Buso, D.; Jasieniak, J.; Lay, M. D. H.; Schiavuta, P.; Scopece, P.; Laird, J.; Amenitsch, H.; Hill, A. J.; Falcaro, P. Highly luminescent metal-organic frameworks through quantum dot doping. Small 2012, 8, 80-88.

42

Lu, G.; Li, S. Z.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X. Y.; Wang, Y.; Wang, X.; Han, S. Y.; Liu, X. G.; DuChene, J. S.; Zhang, H.; Zhang, Q. C.; Chen, X. D.; Ma, J.; Loo, S. C. J.; Wei, W. D.; Yang, Y. H.; Hupp, J. T.; Huo, F. W. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. Nature Chem. 2012, 4, 310-316.

43

Shen, L.; Liang, S.; Wu, W.; Liang, R.; Wu, L. CdS-decorated UiO-66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols. J. Mater. Chem. A 2013, 1, 11473-11482.

44

Yoon, J. W.; Seo, Y. K.; Hwang, Y. K.; Chang, J. S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E.; Llewellyn, P. L.; Serre, C.; Horcajada, P.; Grenèche, J. M.; Rodrigues, A. E.; Férey, G. Controlled reducibility of a metal-organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed. 2010, 49, 5949-5952.

45

Horcajada, P.; Surblé, S.; Serre, C.; Hong, D. Y.; Seo, Y. K.; Chang, J. S.; Grenèche, J. M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores. Chem. Commun. 2007, 2820-2822.

46

Agostoni, V.; Anand, R.; Monti, S.; Hall, S.; Maurin, G.; Horcajada, P.; Serre, C.; Bouchemal, K.; Gref, R. Impact of phosphorylation on the encapsulation of nucleoside analogues within porous iron(Ⅲ) metal-organic framework MIL-100(Fe) nanoparticles. J. Mater. Chem. B 2013, 1, 4231-4242.

47

Dong, F.; Wu, L.; Sun, Y.; Fu, M.; Wu, Z.; Lee, S. C. Efficient synthesis of polymericg-C3N4 layered materials as novel efficient visible light driven photocatalysts. J. Mater. Chem. 2011, 21, 15171-15174.

48

Zhang, Y.; Tang, Z. R.; Fu, X.; Xu, Y. J. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation: What advantage does graphene have over its forebear carbon nanotube? ACS Nano 2011, 5, 7426-7435.

49

Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Visible-light-induced aerobic oxidation of alcohols in a coupled photocatalytic system of dye-sensitized TiO2 and TEMPO. Angew. Chem. Int. Ed. 2008, 47, 9730-9733.

50

Zhang, N.; Fu, X.; Xu, Y. J. A facile and green approach to synthesize Pt@CeO2 nanocomposite with tunable core-shell and yolk-shell structure and its application as a visible light photocatalyst. J. Mater. Chem. 2011, 21, 8152-8158.

File
12274_2014_690_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 October 2014
Revised: 09 December 2014
Accepted: 10 December 2014
Published: 17 February 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. U1232102), National Basic Research Program of China (Nos. 2010CB923302 and 2013CB834605), and the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) of Ministry of Education (Grant No. 20113402110029).

Return