Journal Home > Volume 8 , Issue 2

Hierarchical Co3O4 porous nanowires (NWs) have been synthesized using a hydrothermal method followed by calcination. When employed as a cathode catalyst in non-aqueous Li-oxygen batteries, the Co3O4 NWs effectively improve both the round-trip efficiency and cycling stability, which can be attributed to the high catalytic activities of Co3O4 NWs for the oxygen reduction reaction and the oxygen evolution reaction during discharge and charge processes, respectively.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical Co3O4 porous nanowires as an efficient bifunctional cathode catalyst for long life Li-O2 batteries

Show Author's information Qingchao Liu1,2Yinshan Jiang2Jijing Xu1Dan Xu1Zhiwen Chang1,3Yanbin Yin1,2Wanqiang Liu4Xinbo Zhang1( )
State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
School of Materials Science and EngineeringJilin UniversityChangchun130012China
Graduate University of Chinese Academy of SciencesBeijing100049China
School of Materials Science and EngineeringChangchun University of Science and TechnologyChangchun130022China

Abstract

Hierarchical Co3O4 porous nanowires (NWs) have been synthesized using a hydrothermal method followed by calcination. When employed as a cathode catalyst in non-aqueous Li-oxygen batteries, the Co3O4 NWs effectively improve both the round-trip efficiency and cycling stability, which can be attributed to the high catalytic activities of Co3O4 NWs for the oxygen reduction reaction and the oxygen evolution reaction during discharge and charge processes, respectively.

Keywords: lithium-oxygen batteries, cycling stability, bifunctional cathode catalyst, Co3O4 nanowires

References(33)

1

Wang, Y. G.; He, P.; Zhou, H. S. A lithium-air capacitor- battery based on a hybrid electrolyte. Energy Environ. Sci. 2011, 4, 4994-4999.

2

Abraham, K. M.; Jiang, Z. A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 1996, 143, 1-5.

3

Lu, Y. C.; Gasteiger, H. A.; Parent, M. C; Chiloyan, V.; Shao-Horn, Y. The influence of catalysts on discharge and charge voltages of rechargeable Li-oxygen batteries. Electrochem. Solid-State Lett. 2010, 13, A69-A72.

4

Zheng, J. P.; Liang, R. Y.; Hendrickson, M.; Plichta, E. J. Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 2008, 155, A432-A437.

5

Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 2006, 128, 1390-1393.

6

Zhao, N.; Li, C. L.; Guo, X. X. Review of methods for improving the cyclic stability of Li-air batteries by controlling cathode reactions. Energy Technol. 2014, 2, 317-423

7

Li, F. J.; Zhang, T.; Zhou, H. S. Challenges of non-aqueous Li-O2 batteries: Electrolytes, catalysts, and anodes. Energy Environ. Sci. 2013, 6, 1125-1141.

8

Xu, J. J.; Xu, D.; Wang, Z. L.; Wang, H. G.; Zhang, L. L; Zhang, X. B. Synthesis of perovskite-based porous La0.75Sr0.25MnO3 nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries. Angew. Chem. Int. Ed. 2013, 52, 3887-3890.

9

Zhang, Z. A.; Zhou, G.; Chen, W.; Lai, Y. Q.; Li, J. Facile synthesisof Fe2O3 nanoflakes and their electrochemical properties for Li-air batteries. ECS Electrochem. Lett. 2014, 3, A8-A10.

10

Black, R.; Lee, J. H.; Adams, B.; Mims, C. A.; Nazar, L. F. The role of catalysts and peroxide oxidation in lithium- oxygen batteries. Angew. Chem. Int. Ed. 2013, 52, 392-396.

11

Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high capacity and long-cycle Li-O2 batteries. Nano Lett. 2013, 13, 4190-4197.

12

Zhang, L. L.; Zhang, X. B.; Wang, Z. L.; Xu, J. J.; Xu, D. Wang, L. M. High aspect ratio γ-MnOOH nanowires for high performance rechargeable nonaqueous lithium- oxygen batteries. Chem. Commun. 2012, 48, 7598-7600.

13

Cao, Y.; Wei, Z. K.; He, J.; Zang, J.; Zhang, Q.; Zheng, M. S.; Dong, Q. F. α-MnO2 nanorods grown in situ on graphene as catalysts for Li-O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765-9768.

14

Débart, A.; Bao, J. L.; Armstrong, G.; Bruce, P. G. An O2 cathode for rechargeable lithium batteries: The effect of a catalyst. J. Power Sources 2007, 174, 1177-1182.

15

Tüysüz, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. D. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47-54.

16

Du, H. M, Jiao, L. F.; Wang, Q. H.; Yang, J. Q.; Guo, L. J.; Si, Y. C.; Wang, Y. J.; Yuan, H. T. Facile carbonaceous microsphere templated synthesis of Co3O4 hollow spheres and their electrochemical performance in supercapacitors. Nano Res. 2013, 6, 87-98.

17

Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167-173.

18

Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794-803.

19

Kim, W. S.; Hwa, Y.; Kim, H. C.; Chio, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128-1136.

20

Liu, Q. C.; Xu, J. J.; Chang, Z. W.; Zhang, X. B. Direct electrodeposition of cobalt oxide nanosheets on carbon paper as free-standing cathode for Li-O2 battery. J. Mater. Chem. A 2014, 2, 6081-6085.

21

Xu, J. J.; Wang, Z. L.; Xu, D.; Zhang L. L.; Zhang, X. B. Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. Nat. Commun. 2013, 4, 2438.

22

Sun, B.; Huang X. D.; Chen, S. Q.; Munroe, P. R.; Wang, G. X. Porous graphene nanoarchitectures—An efficient catalyst for low charge-overpotential, long life and high capacity lithium-oxygen batteries. Nano Lett. 2014, 14, 3145-3152.

23

Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460-469.

24

Dong, Y. M.; He, K.; Yin, L.; Zhang, A. M. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 2007, 18, 435602.

25

Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Current density dependence of peroxide formation in the Li-O2 battery and its effect on charge. Energy Environ. Sci. 2013, 6, 1772-1778.

26

Yilmaz, E.; Yogi, C.; Yamanaka, K.; Ohta, T.; Byon, H. R. Promoting formation of noncrystalline Li2O2 in the Li-O2 battery with RuO2 nanoparticles. Nano Lett. 2013, 13, 4679-4684.

27

Gallant, B. M.; Kwabi, D. G.; Mitchell, R. R.; Zhou, J. G.; Thompson, C. V.; Shao-Horn, Y. Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries. Energy Environ. Sci. 2013, 6, 2518-2528.

28

Lu, J.; Lei, Y.; Lau, K. C.; Luo, X. Y.; Du, P.; Wen, J. G.; Assary, R. S.; Das, U.; Miller, D. J.; Elam, J. W.; et al. A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries. Nat. Commun. 2013, 4, 2383

29

Lu, Y. C.; Kwabi, D. G.; Yao, K. P. C.; Harding, J. R.; Zhou, J. G.; Zuin, L.; Shao-Horn, Y. The discharge rate capability of rechargeable Li-O2 batteries. Energy Environ. Sci. 2011, 4, 2999-3007.

30

Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. Mechanisms of morphological evolution of Li2O2 particles during electrochemical growth. J. Phys. Chem. Lett. 2013, 4, 1060-1064.

31

Fan, W. G.; Cui, Z. H.; Guo, X. X. Tracking formation and decomposition of abacus-ball-shaped lithium peroxides in Li-O2 cells. J. Phys. Chem. C 2013, 117, 2623-2627.

32

Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. A transmission electron microscopy study of the electrochemical process of lithium- oxygen cells. Nano Lett. 2012, 12, 4333-4335.

33

Tian, F.; Radin, M. D.; Siegel, D. J. Enhanced charge transport in amorphous Li2O2. Chem. Mater. 2014, 26, 2952-2959.

File
12274_2014_689_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2014
Revised: 09 December 2014
Accepted: 10 December 2014
Published: 29 December 2014
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work is financially supported by the 100 Talents Programme of the Chinese Academy of Sciences, the National Program on Key Basic Research Project of China (973 Program, Grant No. 2012CB215500), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 20921002), the National Natural Science Foundation of China (Grant No. 21101147), and Jilin Province Science and Technology Development Program (Grant No. 201215141).

Return