Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hierarchical self-assembly is a fundamental principle in nature, which gives rise to astonishing supramolecular architectures that are an inspiration for the development of innovative materials in nanotechnology. Here, we present the unique structure of a cone-shaped amphiphilic designer peptide. While tracking its concentration-dependent morphologies, we observed elongated bilayered single tapes at the beginning of the assembly process, which further developed into novel double-helix-like superstructures at high concentrations. This architecture is characterized by a tight intertwisting of two individual helices, resulting in a periodic pitch size over their total lengths of several hundred nanometers. Solution X-ray scattering data revealed a marked 2-layered internal organization. All these characteristics remained unaltered for the investigated period of almost three months. In their collective morphology, the assemblies are integrated into a network with hydrogel characteristics. Such a peptide-based structure holds promise as a building block for next-generation nanostructured biomaterials.
Luo, Z. L.; Zhang, S. G. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem. Soc. Rev. 2012, 41, 4736-4754.
Zelzer, M.; Ulijn, R. V. Next-generation peptide nanomaterials: Molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev. 2010, 39, 3351-3357.
Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813-817.
Zhao, X. B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H. H.; Hauser, C. A.; Zhang, S. G.; Lu, J. R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480-3498.
Ellis-Behnke, R. G.; Liang, Y. -X.; You, S. -W.; Tay, D. K.; Zhang, S. G.; So, K. -F.; Schneider, G. E. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5054-5059.
Ellis-Behnke, R. G.; Schneider, G. E. Peptide amphiphiles and porous biodegradable scaffolds for tissue regeneration in the brain and spinal cord. Methods Mol. Biol. 2011, 726, 259-281.
Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.
Vauthey, S.; Santoso, S.; Gong, H. Y.; Watson, N.; Zhang, S. G. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5355-5360.
Santoso, S.; Hwang, W.; Hartman, H.; Zhang, S. G. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett. 2002, 2, 687-691.
von Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. G. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 2003, 19, 4332-4337.
Xu, H.; Wang, Y. M.; Ge, X.; Han, S. Y.; Wang, S. J.; Zhou, P.; Shan, H. H.; Zhao, X. B.; Lu, J. R. Twisted nanotubes formed from ultrashort amphiphilic peptide I3K and their templating for the fabrication of silica nanotubes. Chem. Mater. 2010, 22, 5165-5173.
Lakshmanan, A.; Hauser, C. A. E. Ultrasmall peptides self-assemble into diverse nanostructures: Morphological evaluation and potential implications. Int. J. Mol. Sci. 2011, 12, 5736-5746.
Han, S. Y.; Cao, S. S.; Wang, Y. M.; Wang, J. Q.; Xia, D. H.; Xu, H.; Zhao, X. B.; Lu, J. R. Self-assembly of short peptide amphiphiles: The cooperative effect of hydrophobic interaction and hydrogen bonding. Chem. -Eur. J. 2011, 17, 13095-13102.
Xu, H.; Wang, J.; Han, S. Y.; Wang, J. Q.; Yu, D. Y.; Zhang, H. Y.; Xia, D. H.; Zhao, X. B.; Waigh, T. A.; Lu, J. R. Hydrophobic-region-induced transitions in self-assembled peptide nanostructures. Langmuir 2009, 25, 4115-4123.
Pan, F.; Zhao, X. B.; Perumal, S.; Waigh, T. A.; Lu, J. R.; Webster, J. R. P. Interfacial dynamic adsorption and structure of molecular layers of peptide surfactants. Langmuir 2009, 26, 5690-5696.
Khoe, U.; Yang, Y. L.; Zhang, S. G. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. Langmuir 2009, 25, 4111-4114.
Castelletto, V.; Nutt, D. R.; Hamley, I. W.; Bucak, S.; Cenker, C.; Olsson, U. Structure of single-wall peptide nanotubes: In situ flow aligning X-ray diffraction. Chem. Commun. 2010, 46, 6270-6272.
Hauser, C. A.; Deng, R. S.; Mishra, A.; Loo, Y.; Khoe, U.; Zhuang, F. R.; Cheong, D. W.; Accardo, A.; Sullivan, M. B.; Riekel, C.; et al. Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1361-1366.
Wang, J.; Han, S. Y.; Meng, G.; Xu, H.; Xia, D. H.; Zhao, X. B.; Schweins, R.; Lu, J. R. Dynamic self-assembly of surfactant-like peptides A6K and A9K. Soft Matter 2009, 5, 3870-3878.
Baumann, M. K.; Textor, M.; Reimhult, E. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity. Langmuir 2008, 24, 7645-7647.
Bucak, S.; Cenker, C.; Nasir, I.; Olsson, U.; Zackrisson, M. Peptide nanotube nematic phase. Langmuir 2009, 25, 4262-4265.
Wang, S. J.; Ge, X.; Xue, J. Y.; Fan, H. M.; Mu, L. J.; Li, Y. P.; Xu, H.; Lu, J. R. Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates. Chem. Mater. 2011, 23, 2466-2474.
Yang, S. J.; Zhang, S. G. Self-assembling behavior of designer lipid-like peptides. Supramol. Chem. 2006, 18, 389-396.
Pontoni, D.; Finet, S.; Narayanan, T.; Rennie, A. R. Interactions and kinetic arrest in an adhesive hard-sphere colloidal system. J. Chem. Phys. 2003, 119, 6157-6165.
Schneidman-Duhovny, D.; Hammel, M.; Tainer, J. A.; Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 2013, 105, 962-974.
Schneidman-Duhovny, D.; Hammel, M.; Sali, A. FoXS: A web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010, 38, W540-W544.
Pashuck, E. T.; Cui, H. G.; Stupp, S. I. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc. 2010, 132, 6041-6046.
Kawaguchi, T. Radii of gyration and scattering functions of a torus and its derivatives. J. Appl. Crystallogr. 2001, 34, 580-584.
Selinger, J. V.; Spector, M. S.; Schnur, J. M. Theory of self-assembled tubules and helical ribbons. J. Phys. Chem. B 2001, 105, 7157-7169.
Teixeira, C. V.; Amenitsch, H.; Fukushima, T.; Hill, J. P.; Jin, W.; Aida, T.; Hotokka, M.; Lindén, M. Form factor of an N-layered helical tape and its application to nanotube formation of hexa-peri-hexabenzocoronene-based molecules. J. Appl. Crystallogr. 2010, 43, 850-857.
Pringle, O. A.; Schmidt, P. W. Small-angle X-ray scattering from helical macromolecules. J. Appl. Crystallogr. 1971, 4, 290-293.
Pedersen, J. S. Analysis of small-angle scattering data from colloid and polymer solutions: Modeling and least-square fitting. Adv. Colloid Interface Sci. 1997, 70, 171-210.
Hamley, I. W. Form factor of helical ribbons. Macromolecules 2008, 41, 8948-8950.
Rudra, J. S.; Tian, Y. F.; Jung, J. P.; Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 622-627.
Collier, J. H.; Messersmith, P. B. Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjugate Chem. 2003, 14, 748-755.
Hicks, M. R.; Damianoglou, A.; Rodger, A.; Dafforn, T. R. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process. J. Mol. Biol. 2008, 383, 358-366.
Chen, C. -L.; Zhang, P. J.; Rosi, N. L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 2008, 130, 13555-13557.
Paramonov, S. E.; Jun, H. -W.; Hartgerink, J. D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 2006, 128, 7291-7298.
Dong, H.; Paramonov, S. E.; Aulisa, L.; Bakota, E. L.; Hartgerink, J. D. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure. J. Am. Chem. Soc. 2007, 129, 12468-12472.
Cenker, Ç. Ç.; Bomans, P. H. H.; Friedrich, H.; Dedeoglu, B.; Aviyente, V.; Olsson, U.; Sommerdijk, N. A. J. M.; Bucak, S. Peptide nanotube formation: A crystal growth process. Soft Matter 2012, 8, 7463-7470.
Fishwick, C. W. G.; Beevers, A. J.; Carrick, L. M.; Whitehouse, C. D.; Aggeli, A.; Boden, N. Structures of helical β-tapes and twisted ribbons: The role of side-chain interactions on twist and bend behavior. Nano Lett. 2003, 3, 1475-1479.
Armon, S.; Aharoni, H.; Moshe, M.; Sharon, E. Shape selection in chiral ribbons: From seed pods to supramolecular assemblies. Soft Matter 2014, 10, 2733-2740.
Cui, H. G.; Webber, M. J.; Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Peptide Sci. 2010, 94, 1-18.
Hamley, I. W. Self-assembly of amphiphilic peptides. Soft Matter 2011, 7, 4122-4138.
Yao, Y.; Xue, M.; Chen, J. Z.; Zhang, M. M.; Huang, F. H. An amphiphilic pillar[5]arene: Synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption. J. Am. Chem. Soc. 2012, 134, 15712-15715.
Yao, Y.; Xue, M.; Zhang, Z. B.; Zhang, M. M.; Wang, Y.; Huang, F. H. Gold nanoparticles stabilized by an amphiphilic pillar[5]arene: Preparation, self-assembly into composite microtubes in water and application in green catalysis. Chem. Sci. 2013, 4, 3667-3672.
Yu, G. C.; Ma, Y. J.; Han, C. Y.; Yao, Y.; Tang, G. P.; Mao, Z. W.; Gao, C. Y.; Huang, F. H A sugar-functionalized amphiphilic pillar[5]arene: Synthesis, self-assembly in water, and application in bacterial cell agglutination. J. Am. Chem. Soc. 2013, 135, 10310-10313.
Amenitsch, H.; Rappolt, M.; Kriechbaum, M.; Mio, H.; Laggner, P.; Bernstorff, S. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J. Synchrotron Rad. 1998, 5, 506-508.
Orthaber, D.; Bergmann, A.; Glatter, O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 2000, 33, 218-225.
Chung, D. S.; Benedek, G. B.; Konikoff, F. M.; Donovan, J. M. Elastic free energy of anisotropic helical ribbons as metastable intermediates in the crystallization of cholesterol. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 11341-11345.
Lees, J. G.; Smith, B. R.; Wien, F.; Miles, A. J.; Wallace, B. A. CDtool-An integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal. Biochem. 2004, 332, 285-289.
765
Views
24
Downloads
22
Crossref
N/A
Web of Science
22
Scopus
1
CSCD
Altmetrics