Journal Home > Volume 8 , Issue 6

Hierarchical self-assembly is a fundamental principle in nature, which gives rise to astonishing supramolecular architectures that are an inspiration for the development of innovative materials in nanotechnology. Here, we present the unique structure of a cone-shaped amphiphilic designer peptide. While tracking its concentration-dependent morphologies, we observed elongated bilayered single tapes at the beginning of the assembly process, which further developed into novel double-helix-like superstructures at high concentrations. This architecture is characterized by a tight intertwisting of two individual helices, resulting in a periodic pitch size over their total lengths of several hundred nanometers. Solution X-ray scattering data revealed a marked 2-layered internal organization. All these characteristics remained unaltered for the investigated period of almost three months. In their collective morphology, the assemblies are integrated into a network with hydrogel characteristics. Such a peptide-based structure holds promise as a building block for next-generation nanostructured biomaterials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Tracking morphologies at the nanoscale: Self-assembly of an amphiphilic designer peptide into a double helix superstructure

Show Author's information Karin Kornmueller1Ilse Letofsky-Papst2Kerstin Gradauer1Christian Mikl1Fernando Cacho-Nerin3,Mario Leypold4Walter Keller5Gerd Leitinger6,7Heinz Amenitsch3Ruth Prassl1( )
Institute of BiophysicsMedical University of GrazBioTechMed-Graz8010Graz, Austria
Institute for Electron Microscopy and NanoanalysisGraz University of Technology and Graz Centre for Electron Microscopy8010Graz, Austria
Institute of Inorganic ChemistryGraz University of Technology8010Graz, Austria
Institute of Organic ChemistryGraz University of Technology8010Graz, Austria
Institute for Molecular BiosciencesKarl-Franzens-University Graz8010Graz, Austria
Research Unit Electron Microscopic TechniquesInstitute of Cell BiologyHistology and EmbryologyMedical University of Graz8010Graz, Austria
Center for Medical ResearchMedical University of Graz8010Graz, Austria

Present address: Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, United Kingdom

Abstract

Hierarchical self-assembly is a fundamental principle in nature, which gives rise to astonishing supramolecular architectures that are an inspiration for the development of innovative materials in nanotechnology. Here, we present the unique structure of a cone-shaped amphiphilic designer peptide. While tracking its concentration-dependent morphologies, we observed elongated bilayered single tapes at the beginning of the assembly process, which further developed into novel double-helix-like superstructures at high concentrations. This architecture is characterized by a tight intertwisting of two individual helices, resulting in a periodic pitch size over their total lengths of several hundred nanometers. Solution X-ray scattering data revealed a marked 2-layered internal organization. All these characteristics remained unaltered for the investigated period of almost three months. In their collective morphology, the assemblies are integrated into a network with hydrogel characteristics. Such a peptide-based structure holds promise as a building block for next-generation nanostructured biomaterials.

Keywords: self-assembly, TEM, spectroscopy, double helix, amphiphilic designer peptide, SAXS

References(53)

1

Luo, Z. L.; Zhang, S. G. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society. Chem. Soc. Rev. 2012, 41, 4736-4754.

2

Zelzer, M.; Ulijn, R. V. Next-generation peptide nanomaterials: Molecular networks, interfaces and supramolecular functionality. Chem. Soc. Rev. 2010, 39, 3351-3357.

3

Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813-817.

4

Zhao, X. B.; Pan, F.; Xu, H.; Yaseen, M.; Shan, H. H.; Hauser, C. A.; Zhang, S. G.; Lu, J. R. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 2010, 39, 3480-3498.

5

Ellis-Behnke, R. G.; Liang, Y. -X.; You, S. -W.; Tay, D. K.; Zhang, S. G.; So, K. -F.; Schneider, G. E. Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 5054-5059.

6

Ellis-Behnke, R. G.; Schneider, G. E. Peptide amphiphiles and porous biodegradable scaffolds for tissue regeneration in the brain and spinal cord. Methods Mol. Biol. 2011, 726, 259-281.

7

Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 2001, 294, 1684-1688.

8

Vauthey, S.; Santoso, S.; Gong, H. Y.; Watson, N.; Zhang, S. G. Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 5355-5360.

9

Santoso, S.; Hwang, W.; Hartman, H.; Zhang, S. G. Self-assembly of surfactant-like peptides with variable glycine tails to form nanotubes and nanovesicles. Nano Lett. 2002, 2, 687-691.

10

von Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. G. Positively charged surfactant-like peptides self-assemble into nanostructures. Langmuir 2003, 19, 4332-4337.

11

Xu, H.; Wang, Y. M.; Ge, X.; Han, S. Y.; Wang, S. J.; Zhou, P.; Shan, H. H.; Zhao, X. B.; Lu, J. R. Twisted nanotubes formed from ultrashort amphiphilic peptide I3K and their templating for the fabrication of silica nanotubes. Chem. Mater. 2010, 22, 5165-5173.

12

Lakshmanan, A.; Hauser, C. A. E. Ultrasmall peptides self-assemble into diverse nanostructures: Morphological evaluation and potential implications. Int. J. Mol. Sci. 2011, 12, 5736-5746.

13

Han, S. Y.; Cao, S. S.; Wang, Y. M.; Wang, J. Q.; Xia, D. H.; Xu, H.; Zhao, X. B.; Lu, J. R. Self-assembly of short peptide amphiphiles: The cooperative effect of hydrophobic interaction and hydrogen bonding. Chem. -Eur. J. 2011, 17, 13095-13102.

14

Xu, H.; Wang, J.; Han, S. Y.; Wang, J. Q.; Yu, D. Y.; Zhang, H. Y.; Xia, D. H.; Zhao, X. B.; Waigh, T. A.; Lu, J. R. Hydrophobic-region-induced transitions in self-assembled peptide nanostructures. Langmuir 2009, 25, 4115-4123.

15

Pan, F.; Zhao, X. B.; Perumal, S.; Waigh, T. A.; Lu, J. R.; Webster, J. R. P. Interfacial dynamic adsorption and structure of molecular layers of peptide surfactants. Langmuir 2009, 26, 5690-5696.

16

Khoe, U.; Yang, Y. L.; Zhang, S. G. Self-assembly of nanodonut structure from a cone-shaped designer lipid-like peptide surfactant. Langmuir 2009, 25, 4111-4114.

17

Castelletto, V.; Nutt, D. R.; Hamley, I. W.; Bucak, S.; Cenker, C.; Olsson, U. Structure of single-wall peptide nanotubes: In situ flow aligning X-ray diffraction. Chem. Commun. 2010, 46, 6270-6272.

18

Hauser, C. A.; Deng, R. S.; Mishra, A.; Loo, Y.; Khoe, U.; Zhuang, F. R.; Cheong, D. W.; Accardo, A.; Sullivan, M. B.; Riekel, C.; et al. Natural tri- to hexapeptides self-assemble in water to amyloid β-type fiber aggregates by unexpected α-helical intermediate structures. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 1361-1366.

19

Wang, J.; Han, S. Y.; Meng, G.; Xu, H.; Xia, D. H.; Zhao, X. B.; Schweins, R.; Lu, J. R. Dynamic self-assembly of surfactant-like peptides A6K and A9K. Soft Matter 2009, 5, 3870-3878.

20

Baumann, M. K.; Textor, M.; Reimhult, E. Understanding self-assembled amphiphilic peptide supramolecular structures from primary structure helix propensity. Langmuir 2008, 24, 7645-7647.

21

Bucak, S.; Cenker, C.; Nasir, I.; Olsson, U.; Zackrisson, M. Peptide nanotube nematic phase. Langmuir 2009, 25, 4262-4265.

22

Wang, S. J.; Ge, X.; Xue, J. Y.; Fan, H. M.; Mu, L. J.; Li, Y. P.; Xu, H.; Lu, J. R. Mechanistic processes underlying biomimetic synthesis of silica nanotubes from self-assembled ultrashort peptide templates. Chem. Mater. 2011, 23, 2466-2474.

23

Yang, S. J.; Zhang, S. G. Self-assembling behavior of designer lipid-like peptides. Supramol. Chem. 2006, 18, 389-396.

24

Pontoni, D.; Finet, S.; Narayanan, T.; Rennie, A. R. Interactions and kinetic arrest in an adhesive hard-sphere colloidal system. J. Chem. Phys. 2003, 119, 6157-6165.

25

Schneidman-Duhovny, D.; Hammel, M.; Tainer, J. A.; Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys. J. 2013, 105, 962-974.

26

Schneidman-Duhovny, D.; Hammel, M.; Sali, A. FoXS: A web server for rapid computation and fitting of SAXS profiles. Nucleic Acids Res. 2010, 38, W540-W544.

27

Pashuck, E. T.; Cui, H. G.; Stupp, S. I. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc. 2010, 132, 6041-6046.

28

Kawaguchi, T. Radii of gyration and scattering functions of a torus and its derivatives. J. Appl. Crystallogr. 2001, 34, 580-584.

29

Selinger, J. V.; Spector, M. S.; Schnur, J. M. Theory of self-assembled tubules and helical ribbons. J. Phys. Chem. B 2001, 105, 7157-7169.

30

Teixeira, C. V.; Amenitsch, H.; Fukushima, T.; Hill, J. P.; Jin, W.; Aida, T.; Hotokka, M.; Lindén, M. Form factor of an N-layered helical tape and its application to nanotube formation of hexa-peri-hexabenzocoronene-based molecules. J. Appl. Crystallogr. 2010, 43, 850-857.

31

Pringle, O. A.; Schmidt, P. W. Small-angle X-ray scattering from helical macromolecules. J. Appl. Crystallogr. 1971, 4, 290-293.

32

Pedersen, J. S. Analysis of small-angle scattering data from colloid and polymer solutions: Modeling and least-square fitting. Adv. Colloid Interface Sci. 1997, 70, 171-210.

33

Hamley, I. W. Form factor of helical ribbons. Macromolecules 2008, 41, 8948-8950.

34

Rudra, J. S.; Tian, Y. F.; Jung, J. P.; Collier, J. H. A self-assembling peptide acting as an immune adjuvant. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 622-627.

35

Collier, J. H.; Messersmith, P. B. Enzymatic modification of self-assembled peptide structures with tissue transglutaminase. Bioconjugate Chem. 2003, 14, 748-755.

36

Hicks, M. R.; Damianoglou, A.; Rodger, A.; Dafforn, T. R. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process. J. Mol. Biol. 2008, 383, 358-366.

37

Chen, C. -L.; Zhang, P. J.; Rosi, N. L. A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 2008, 130, 13555-13557.

38

Paramonov, S. E.; Jun, H. -W.; Hartgerink, J. D. Self-assembly of peptide-amphiphile nanofibers: The roles of hydrogen bonding and amphiphilic packing. J. Am. Chem. Soc. 2006, 128, 7291-7298.

39

Dong, H.; Paramonov, S. E.; Aulisa, L.; Bakota, E. L.; Hartgerink, J. D. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure. J. Am. Chem. Soc. 2007, 129, 12468-12472.

40

Cenker, Ç. Ç.; Bomans, P. H. H.; Friedrich, H.; Dedeoglu, B.; Aviyente, V.; Olsson, U.; Sommerdijk, N. A. J. M.; Bucak, S. Peptide nanotube formation: A crystal growth process. Soft Matter 2012, 8, 7463-7470.

41

Fishwick, C. W. G.; Beevers, A. J.; Carrick, L. M.; Whitehouse, C. D.; Aggeli, A.; Boden, N. Structures of helical β-tapes and twisted ribbons: The role of side-chain interactions on twist and bend behavior. Nano Lett. 2003, 3, 1475-1479.

42

Armon, S.; Aharoni, H.; Moshe, M.; Sharon, E. Shape selection in chiral ribbons: From seed pods to supramolecular assemblies. Soft Matter 2014, 10, 2733-2740.

43

Cui, H. G.; Webber, M. J.; Stupp, S. I. Self-assembly of peptide amphiphiles: From molecules to nanostructures to biomaterials. Peptide Sci. 2010, 94, 1-18.

44

Hamley, I. W. Self-assembly of amphiphilic peptides. Soft Matter 2011, 7, 4122-4138.

45

Yao, Y.; Xue, M.; Chen, J. Z.; Zhang, M. M.; Huang, F. H. An amphiphilic pillar[5]arene: Synthesis, controllable self-assembly in water, and application in calcein release and TNT adsorption. J. Am. Chem. Soc. 2012, 134, 15712-15715.

46

Yao, Y.; Xue, M.; Zhang, Z. B.; Zhang, M. M.; Wang, Y.; Huang, F. H. Gold nanoparticles stabilized by an amphiphilic pillar[5]arene: Preparation, self-assembly into composite microtubes in water and application in green catalysis. Chem. Sci. 2013, 4, 3667-3672.

47

Yu, G. C.; Ma, Y. J.; Han, C. Y.; Yao, Y.; Tang, G. P.; Mao, Z. W.; Gao, C. Y.; Huang, F. H A sugar-functionalized amphiphilic pillar[5]arene: Synthesis, self-assembly in water, and application in bacterial cell agglutination. J. Am. Chem. Soc. 2013, 135, 10310-10313.

48

Amenitsch, H.; Rappolt, M.; Kriechbaum, M.; Mio, H.; Laggner, P.; Bernstorff, S. First performance assessment of the small-angle X-ray scattering beamline at ELETTRA. J. Synchrotron Rad. 1998, 5, 506-508.

49
European Synchrotron Radiation Facility, Fit2D. http://www.esrf.eu/computing/scientific/FIT2D/ (accessed August, 2014).
50

Orthaber, D.; Bergmann, A.; Glatter, O. SAXS experiments on absolute scale with Kratky systems using water as a secondary standard. J. Appl. Crystallogr. 2000, 33, 218-225.

51

Chung, D. S.; Benedek, G. B.; Konikoff, F. M.; Donovan, J. M. Elastic free energy of anisotropic helical ribbons as metastable intermediates in the crystallization of cholesterol. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 11341-11345.

52

Lees, J. G.; Smith, B. R.; Wien, F.; Miles, A. J.; Wallace, B. A. CDtool-An integrated software package for circular dichroism spectroscopic data processing, analysis, and archiving. Anal. Biochem. 2004, 332, 285-289.

53
Blender Foundation. http://www.blender.org/ (accessed August, 2014).
File
12274_2014_683_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2014
Revised: 05 December 2014
Accepted: 07 December 2014
Published: 28 March 2015
Issue date: June 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work has been supported by the Austrian Science Fund (FWF Project No. I 1109-N28 to R. P.). We thank Elisabeth Bock and Gertrud Havlicek for technical assistance with electron microscopy. We gratefully acknowledge Rolf Breinbauer for providing access to infrared spectroscopy instrumentation.

Return