Journal Home > Volume 8 , Issue 2

Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibited excellent electrocatalytic activity for the oxygen reduction reaction. The electron transfer number was calculated to be ~3.9 at -0.7 V (vs. Ag/AgCl) from the slope of the Koutecky-Levich plots. The U3O8/rGO hybrids were more stable than commercial Pt/C catalysts. Furthermore, when methanol was present, the U3O8/rGO hybrids still retained high activity. In addition, the U3O8/rGO hybrids can also catalyze the reduction of hydrogen peroxide.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Preparation and electrocatalytic properties of triuranium octoxide supported on reduced graphene oxide

Show Author's information Dongliang Gao1,2Zhenyu Zhang1Li Ding1Juan Yang1Yan Li1,2( )
Key Laboratory for the Physics and Chemistry of NanodevicesBeijing National Laboratory for Molecular ScienceCollege of Chemistry and Molecular EngineeringState Key Laboratory of Rare Earth Materials Chemistry and ApplicationsPeking UniversityBeijing100871China
Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing100871China

Abstract

Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibited excellent electrocatalytic activity for the oxygen reduction reaction. The electron transfer number was calculated to be ~3.9 at -0.7 V (vs. Ag/AgCl) from the slope of the Koutecky-Levich plots. The U3O8/rGO hybrids were more stable than commercial Pt/C catalysts. Furthermore, when methanol was present, the U3O8/rGO hybrids still retained high activity. In addition, the U3O8/rGO hybrids can also catalyze the reduction of hydrogen peroxide.

Keywords: oxygen reduction reaction, electrocatalysis, triuranium octoxide, reduced graphene oxides

References(39)

1

Nier, A. O. The isotopic constitution of uranium and the half-lives of the uranium isotopes. I. Phys. Rev. 1939, 55, 150-153.

2

Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A 2003, 729, 3-128.

3

Gresham, G. L.; Gianotto, A. K.; Harrington, P. D. B.; Cao, L. B.; Scott, J. R.; Olson, J. E.; Appelhans, A. D.; Van Stipdonk, M. J.; Groenewold, G. S. Gas-phase hydration of U(IV), U(V), and U(VI) dioxo monocations. J. Phys. Chem. A 2003, 107, 8530-8538.

4

Hargreaves, W. A. High-resolution measurements of absorption, fluorescence, and crystal-field splittings of solutions of divalent, trivalent, and tetravalent uranium ions in fluoride crystals. Phys. Rev. 1967, 156, 331-342.

5

Domingos, A.; Marques, N.; Dematos, A. P.; Santos, I.; Silva, M. Hydrotris(pyrazolyl)borate chemistry of uranium(Ⅲ) and uranium(IV)-synthesis of delta-hydrocarbyl derivatives of uranium(IV) and reactivity of UCl2R[HB(3, 5-Me2pz)3] (R = CH2SiMe3, CH(SiMe3)2) and UCl2[HB(3, 5-Me2pz)3] toward ketones and aldehydes. Organometallics 1994, 13, 654-662.

6

Weydert, M.; Brennan, J. G.; Andersen, R. A.; Bergman, R. G. Reactions of a uranium(IV) tertiary alkyl bond: Facile ligand-assisted reduction and insertion of ethylene and carbon-monoxide. Organometallics 1995, 14, 3942-3951.

7

Privalov, T.; Schimmelpfennig, B.; Wahlgren, U.; Grenthe, I. Structure and thermodynamics of uranium(VI) complexes in the gas phase: A comparison of experimental and ab initio data. J. Phys. Chem. A 2002, 106, 11277-11282.

8

Duttera, M. R.; Fagan, P. J.; Marks, T. J.; Day, V. W. Synthesis, properties, and molecular-structure of a trivalent organouranium diphosphine hydride. J. Am. Chem. Soc. 1982, 104, 865-867.

9

Sturchio, N. C.; Antonio, M. R.; Soderholm, L.; Sutton, S. R.; Brannon, J. C. Tetravalent uranium in calcite. Science 1998, 281, 971-973.

10

Idriss, H. Surface reactions of uranium oxide powder, thin films and single crystals. Surf. Sci. Rep. 2010, 65, 67-109.

11

Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Towards uranium catalysts. Nature 2008, 455, 341-349.

12

Senanayake, S. D.; Waterhouse, G. I. N.; Idriss, H.; Madey, T. E. Coupling of carbon monoxide molecules over oxygen- defected UO2(111) single crystal and thin film surfaces. Langmuir 2005, 21, 11141-11145.

13

Amrute, A. P.; Krumeich, F.; Mondelli, C.; Pérez-Ramírez, J. Depleted uranium catalysts for chlorine production. Chem. Sci. 2013, 4, 2209-2217.

15

Pradhan, M.; Sarkar, S.; Sinha, A. K.; Basu, M.; Pal, T. Morphology controlled uranium oxide hydroxide hydrate for catalysis, luminescence and SERS studies. CrystEngComm 2011, 13, 2878-2889.

16

Hutchings, G. J.; Heneghan, C. S.; Hudson, I. D.; Taylor, S. H. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 1996, 384, 341-343.

17

Madhavaram, H.; Idriss, H. Acetaldehyde reactions over the uranium oxide system. J. Catal. 2004, 224, 358-369.

18

Wang, Q.; Li, G. D.; Xu, S.; Li, J. X.; Chen, J. S. Synthesis of uranium oxide nanoparticles and their catalytic performance for benzyl alcohol conversion to benzaldehyde. J. Mater. Chem. 2008, 18, 1146-1152.

19

Zhao, R.; Wang, L.; Gu, Z. J.; Yuan, L. Y.; Xiao, C. L.; Zhao, Y. L.; Chai, Z. F.; Shi, W. Q. A facile additive-free method for tunable fabrication of UO2 and U3O8 nanoparticles in aqueous solution. CrystEngComm 2014, 16, 2645-2651.

20

Bouala, G. I. N.; Clavier, N.; Podor, R.; Cambedouzou, J.; Mesbah, A.; Brau, H. P.; Lechelle, J.; Dacheux, N. Preparation and characterisation of uranium oxides with spherical shapes and hierarchical structures. CrystEngComm 2014, 16, 6944-6954.

21

Wu, H. M.; Yang, Y. G.; Cao, Y. C. Synthesis of colloidal uranium-dioxide nanocrystals. J. Am. Chem. Soc. 2006, 128, 16522-16523.

22

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

23

Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270-3271.

24

Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472-7477.

25

Liang, Y. Y.; Wang, H. L.; Sanchez Casalongue, H.; Chen, Z.; Dai, H. J. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701-705.

26

Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Sanchez Casalongue, H.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-tate-performance lithium ion batteries. Angew. Chem. Int. Ed. 2011, 50, 7364-7368.

27

Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.

28

Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729-736.

29

Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese- cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.

30

Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4- graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.

31

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.

32

Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 2008, 101, 096802.

33

Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.

34

Neumann, C. C.; Laborda, E.; Tschulik, K.; Ward, K. R.; Compton, R. G. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen oeroxide escape. Nano Res. 2013, 6, 511-524.

35

Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity if Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205-1214.

36

Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293-301.

37

Sofer, Z.; Jankovský, O.; Simek, P.; Klímová, K.; Machová, A.; Pumera, M. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction. ACS Nano 2014, 8, 7106-7114.

38

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806-4814.

39

Wang, T. Y.; Gao, D. L.; Zhuo, J.; Zhu, Z. W.; Papakonstantinou, P.; Li, Y.; Li, M. X. Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chem. Eur. J. 2013, 19, 11939-11948.

40

Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. Carbonsupported mangese oxide nanoparticles as electrocatalysts for the oxygen reduction (ORR) in alkaline medium: Physical characterizations and ORR mechanism. J. Phys. Chem. C 2007, 111, 1434-1443.

File
12274_2014_668_MOESM1_ESM.pdf (1.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2014
Revised: 25 November 2014
Accepted: 30 November 2014
Published: 13 January 2015
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work is supported by the Ministry of Science and Technology of China (Project No. 2011CB933003) and the National Natural Science Foundation of China (Project Nos. 11179011, 21125103, and 91333105).

Return