Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Triuranium octoxide-reduced graphene oxide (U3O8/rGO) hybrids have been prepared by a two-step solution-phase method. The presence of GO is essential in order to obtain pure phase U3O8. The U3O8/rGO hybrids exhibited excellent electrocatalytic activity for the oxygen reduction reaction. The electron transfer number was calculated to be ~3.9 at -0.7 V (vs. Ag/AgCl) from the slope of the Koutecky-Levich plots. The U3O8/rGO hybrids were more stable than commercial Pt/C catalysts. Furthermore, when methanol was present, the U3O8/rGO hybrids still retained high activity. In addition, the U3O8/rGO hybrids can also catalyze the reduction of hydrogen peroxide.
Nier, A. O. The isotopic constitution of uranium and the half-lives of the uranium isotopes. I. Phys. Rev. 1939, 55, 150-153.
Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. The Nubase evaluation of nuclear and decay properties. Nucl. Phys. A 2003, 729, 3-128.
Gresham, G. L.; Gianotto, A. K.; Harrington, P. D. B.; Cao, L. B.; Scott, J. R.; Olson, J. E.; Appelhans, A. D.; Van Stipdonk, M. J.; Groenewold, G. S. Gas-phase hydration of U(IV), U(V), and U(VI) dioxo monocations. J. Phys. Chem. A 2003, 107, 8530-8538.
Hargreaves, W. A. High-resolution measurements of absorption, fluorescence, and crystal-field splittings of solutions of divalent, trivalent, and tetravalent uranium ions in fluoride crystals. Phys. Rev. 1967, 156, 331-342.
Domingos, A.; Marques, N.; Dematos, A. P.; Santos, I.; Silva, M. Hydrotris(pyrazolyl)borate chemistry of uranium(Ⅲ) and uranium(IV)-synthesis of delta-hydrocarbyl derivatives of uranium(IV) and reactivity of UCl2R[HB(3, 5-Me2pz)3] (R = CH2SiMe3, CH(SiMe3)2) and UCl2[HB(3, 5-Me2pz)3] toward ketones and aldehydes. Organometallics 1994, 13, 654-662.
Weydert, M.; Brennan, J. G.; Andersen, R. A.; Bergman, R. G. Reactions of a uranium(IV) tertiary alkyl bond: Facile ligand-assisted reduction and insertion of ethylene and carbon-monoxide. Organometallics 1995, 14, 3942-3951.
Privalov, T.; Schimmelpfennig, B.; Wahlgren, U.; Grenthe, I. Structure and thermodynamics of uranium(VI) complexes in the gas phase: A comparison of experimental and ab initio data. J. Phys. Chem. A 2002, 106, 11277-11282.
Duttera, M. R.; Fagan, P. J.; Marks, T. J.; Day, V. W. Synthesis, properties, and molecular-structure of a trivalent organouranium diphosphine hydride. J. Am. Chem. Soc. 1982, 104, 865-867.
Sturchio, N. C.; Antonio, M. R.; Soderholm, L.; Sutton, S. R.; Brannon, J. C. Tetravalent uranium in calcite. Science 1998, 281, 971-973.
Idriss, H. Surface reactions of uranium oxide powder, thin films and single crystals. Surf. Sci. Rep. 2010, 65, 67-109.
Fox, A. R.; Bart, S. C.; Meyer, K.; Cummins, C. C. Towards uranium catalysts. Nature 2008, 455, 341-349.
Senanayake, S. D.; Waterhouse, G. I. N.; Idriss, H.; Madey, T. E. Coupling of carbon monoxide molecules over oxygen- defected UO2(111) single crystal and thin film surfaces. Langmuir 2005, 21, 11141-11145.
Amrute, A. P.; Krumeich, F.; Mondelli, C.; Pérez-Ramírez, J. Depleted uranium catalysts for chlorine production. Chem. Sci. 2013, 4, 2209-2217.
Pradhan, M.; Sarkar, S.; Sinha, A. K.; Basu, M.; Pal, T. Morphology controlled uranium oxide hydroxide hydrate for catalysis, luminescence and SERS studies. CrystEngComm 2011, 13, 2878-2889.
Hutchings, G. J.; Heneghan, C. S.; Hudson, I. D.; Taylor, S. H. Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature 1996, 384, 341-343.
Madhavaram, H.; Idriss, H. Acetaldehyde reactions over the uranium oxide system. J. Catal. 2004, 224, 358-369.
Wang, Q.; Li, G. D.; Xu, S.; Li, J. X.; Chen, J. S. Synthesis of uranium oxide nanoparticles and their catalytic performance for benzyl alcohol conversion to benzaldehyde. J. Mater. Chem. 2008, 18, 1146-1152.
Zhao, R.; Wang, L.; Gu, Z. J.; Yuan, L. Y.; Xiao, C. L.; Zhao, Y. L.; Chai, Z. F.; Shi, W. Q. A facile additive-free method for tunable fabrication of UO2 and U3O8 nanoparticles in aqueous solution. CrystEngComm 2014, 16, 2645-2651.
Bouala, G. I. N.; Clavier, N.; Podor, R.; Cambedouzou, J.; Mesbah, A.; Brau, H. P.; Lechelle, J.; Dacheux, N. Preparation and characterisation of uranium oxides with spherical shapes and hierarchical structures. CrystEngComm 2014, 16, 6944-6954.
Wu, H. M.; Yang, Y. G.; Cao, Y. C. Synthesis of colloidal uranium-dioxide nanocrystals. J. Am. Chem. Soc. 2006, 128, 16522-16523.
Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.
Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270-3271.
Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472-7477.
Liang, Y. Y.; Wang, H. L.; Sanchez Casalongue, H.; Chen, Z.; Dai, H. J. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701-705.
Wang, H. L.; Yang, Y.; Liang, Y. Y.; Cui, L. F.; Sanchez Casalongue, H.; Li, Y. G.; Hong, G. S.; Cui, Y.; Dai, H. J. LiMn1-xFexPO4 nanorods grown on graphene sheets for ultrahigh-tate-performance lithium ion batteries. Angew. Chem. Int. Ed. 2011, 50, 7364-7368.
Li, Y. G.; Wang, H. L.; Xie, L. M.; Liang, Y. Y.; Hong, G. S.; Dai, H. J. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2011, 133, 7296-7299.
Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729-736.
Liang, Y. Y.; Wang, H. L.; Zhou, J. G.; Li, Y. G.; Wang, J.; Regier, T.; Dai, H. J. Covalent hybrid of spinel manganese- cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517-3523.
Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4- graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978-13980.
Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902-907.
Bolotin, K. I.; Sikes, K. J.; Hone, J.; Stormer, H. L.; Kim, P. Temperature-dependent transport in suspended graphene. Phys. Rev. Lett. 2008, 101, 096802.
Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385-388.
Neumann, C. C.; Laborda, E.; Tschulik, K.; Ward, K. R.; Compton, R. G. Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen oeroxide escape. Nano Res. 2013, 6, 511-524.
Fu, G. T.; Liu, Z. Y.; Chen, Y.; Lin, J.; Tang, Y. W.; Lu, T. H. Synthesis and electrocatalytic activity if Au@Pd core-shell nanothorns for the oxygen reduction reaction. Nano Res. 2014, 7, 1205-1214.
Liu, Z. Y.; Zhang, G. X.; Lu, Z. Y.; Jin, X. Y.; Chang, Z.; Sun, X. M. One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Res. 2013, 6, 293-301.
Sofer, Z.; Jankovský, O.; Simek, P.; Klímová, K.; Machová, A.; Pumera, M. Uranium- and thorium-doped graphene for efficient oxygen and hydrogen peroxide reduction. ACS Nano 2014, 8, 7106-7114.
Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806-4814.
Wang, T. Y.; Gao, D. L.; Zhuo, J.; Zhu, Z. W.; Papakonstantinou, P.; Li, Y.; Li, M. X. Size-dependent enhancement of electrocatalytic oxygen-reduction and hydrogen-evolution performance of MoS2 particles. Chem. Eur. J. 2013, 19, 11939-11948.
Roche, I.; Chaînet, E.; Chatenet, M.; Vondrák, J. Carbonsupported mangese oxide nanoparticles as electrocatalysts for the oxygen reduction (ORR) in alkaline medium: Physical characterizations and ORR mechanism. J. Phys. Chem. C 2007, 111, 1434-1443.