Journal Home > Volume 8 , Issue 2

Adding a small amount of nanocrystalline TiO2@C (TiO2 supported on nanoporous carbon) composite dramatically decreases the operating temperatures and improves the reaction kinetics for hydrogen storage in NaAlH4. The nanocrystalline TiO2@C composite synthesized at 900 ℃ (referred as TiO2@C-900) exhibits superior catalytic activity to other catalyst-containing samples. The onset dehydrogenation temperature of the TiO2@C-900-containing sample is lowered to 90 ℃; this is 65 ℃ lower than that of the pristine sample. The dehydrogenated sample is completely hydrogenated at 115 ℃ and 100 bar of hydrogen pressure with a hydrogen capacity of 4.5 wt.%. Structural analyses reveal that the Ti undergoes a reduction process of Ti4+→Ti3+→Ti2+→Ti during the ball milling and heating processes, and further converts to Ti hydrides or forms Ti-Al species after rehydrogenation. The catalytic activities of Ti-based catalytic species decrease in the order Al-Ti-species > TiH0.71 > TiH2 > TiO2. This understanding guides further improvement in hydrogen storage properties of metal alanates using nanocrystalline transition metal-based additives.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation

Show Author's information Xin ZhangYongfeng Liu( )Ke WangMingxia GaoHongge Pan
State Key Laboratory of Silicon MaterialsKey Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province and Department of Materials Science and EngineeringZhejiang UniversityHangzhou310027China

Abstract

Adding a small amount of nanocrystalline TiO2@C (TiO2 supported on nanoporous carbon) composite dramatically decreases the operating temperatures and improves the reaction kinetics for hydrogen storage in NaAlH4. The nanocrystalline TiO2@C composite synthesized at 900 ℃ (referred as TiO2@C-900) exhibits superior catalytic activity to other catalyst-containing samples. The onset dehydrogenation temperature of the TiO2@C-900-containing sample is lowered to 90 ℃; this is 65 ℃ lower than that of the pristine sample. The dehydrogenated sample is completely hydrogenated at 115 ℃ and 100 bar of hydrogen pressure with a hydrogen capacity of 4.5 wt.%. Structural analyses reveal that the Ti undergoes a reduction process of Ti4+→Ti3+→Ti2+→Ti during the ball milling and heating processes, and further converts to Ti hydrides or forms Ti-Al species after rehydrogenation. The catalytic activities of Ti-based catalytic species decrease in the order Al-Ti-species > TiH0.71 > TiH2 > TiO2. This understanding guides further improvement in hydrogen storage properties of metal alanates using nanocrystalline transition metal-based additives.

Keywords: hydrogen storage, complex hydrides, catalyst addition, nanocrystalline TiO2@C

References(28)

1

Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353-358.

2

Li, L.; Xu, C. C.; Chen, C. C.; Wang. Y. J.; Jiao, L. F.; Yuan, H. T. Sodium alanate system for efficient hydrogen storage. Int. J. Hydrogen Energy 2013, 21, 8798-8812.

3

Züttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, Ph.; Emmenegger, Ch. LiBH4 a new hydrogen storage material. J. Power Sources 2003, 118, 1-7.

4

Cui, J.; Liu, J. W.; Wang, H.; Ouyang, L. Z.; Sun, D. L.; Zhu, M.; Yao, X. D. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645-9655.

5

Chlopek, K.; Frommen, C.; Léon, A.; Zabara, O.; Fichtner, M. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. J. Mater. Chem. 2007, 17, 3496-3503.

6

Kim, J. H.; Jin, S. A.; Shim, J. H.; Cho, Y. W. Thermal decomposition behavior of calcium borohydride Ca(BH4)2. J. Alloys Compd. 2008, 461, L20-L22.

7

Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloy Compd. 1997, 253, 1-9.

8

Bogdanović, B.; Felderhoff, M.; Pommerin, A.; Schüth, F.; Spielkamp, N. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv. Mater. 2006, 18, 1198-1201.

9

Hu, J. J.; Ren, S. H.; Witter, R.; Fichtner, M. Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaAlH4. Adv. Energy Mater. 2012, 2, 560-568.

10

Rafi, U. D.; Qu, X. H.; Li, P.; Zhang, L.; Wan, Q.; Iqbal, M. Z.; Rafique, M. Y.; Farooq, M. H.; Islam, U. D. Superior catalytic effects of Nb2O5, TiO2 and Cr2O3 nanoparticles in improving the hydrogen sorption properties of NaAlH4. J. Phys. Chem. C 2012, 116, 11924-11938.

11

Suttisawat, Y.; Jannatisin, V.; Rangsunvighit, P.; Kitiyanan, B.; Muangsin, N.; Kulprathipanja, S. Understanding the effect of TiO2, VCl3, and HfCl4 on hydrogen desorption/ absorption of NaAlH4. J. Power Sources 2007, 163, 997- 1002.

12

Zhang, X.; Liu, Y. F.; Pang, Y. P.; Gao, M. X.; Pan, H. G. Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH4 with the Ti-incorporated metal organic framework MIL-125(Ti). J. Mater. Chem. A 2014, 2, 1847-1854.

13

Gross, K.; Thomas, G. J.; Jensen, C. M. Catalyzed alanates for hydrogen storage. J. Alloys Compd. 2002, 332, 683-690.

14

Liu, Y. F.; Liang, C.; Zhou, H.; Gao, M. X.; Pan, H. G.; Wang, Q. D. A novel catalyst precursor K2TiF6 with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH4. Chem. Commun. 2011, 47, 1740-1742.

15

Pitt, M. P.; Vullum, P. E.; Sørby, M. H.; Sulic, M. P.; Jensen, C. M.; Walmsley, J. C.; Holmestad, R.; Hauback, B. C. Structural properties of the nanoscopic Al85Ti15 solid solution observed in the hydrogen-cycled NaAlH4 + 0.1TiCl3 system. Acta Mater. 2008, 56, 4691-4701.

16

Wang, P.; Kang, X. D.; Cheng, H. M. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J. Phys. Chem. B 2005, 109, 20131-20136.

17

Frankcombe, T. J. Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem. Rev. 2012, 112, 2164-2178.

18

Xiong, R. J.; Sang, G.; Yan, X. Y.; Zhang, G. H.; Ye, X. Q. Improvement of the hydrogen storage kinetics of NaAlH4 with Ti-loaded high-ordered mesoporous carbons (Ti-OMCs) by melt infiltration. J. Mater. Chem. 2012, 22, 17183-17189.

19

Cento, C.; Gislon, P.; Bilgili, M.; Masci, A.; Zheng, Q.; Prosini, P. P. How carbon affects hydrogen desorption in NaAlH4 and Ti-doped NaAlH4. J. Alloys Compd. 2007, 437, 360-366.

20

Zheng, S. Y.; Fang, F.; Zhou, G. Y.; Chen, G. R.; Ouyang, L. Z.; Zhu, M.; Sun, D. L. Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica. Chem. Mater. 2008, 20, 3954-3958.

21

Stavila, V.; Bhakta, R. K.; Alam, T. M.; Majzoub, E. H.; Allendorf, M. D. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano. 2012, 6, 9807-9817.

22

Liu, Y. F.; Yang, Y. J.; Zhou, Y. F.; Zhang, Y.; Gao, M. X.; Pan, H. G. Properties and mechanisms of the Mg(BH4)2- NaAlH4 system. Int. J. Hydrogen Energy 2012, 37, 17137- 17145.

23

Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. A new photoactive crystalline highly porous titanium (IV) dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857-10859.

24

Zhang, H. Z.; Banfield, J. F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 2000, 104, 3481-3487.

25

Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 2008, 47, 1766-1769.

26

Gu, J.; Gao, M. X.; Pan, H. G.; Liu, Y. F.; Li, B.; Yang, Y. J.; Liang, C.; Fu, H. L.; Guo. Z. X. Improved hydrogen storage performance of Ca(BH4)2: A synergetic effect of porous morphology and in situ formed TiO2. Energy Environ. Sci. 2013, 6, 847-858.

27

Werfel. F.; Brümmer, O. Corundum structure oxides studied by XPS. Phys. Scr. 1983, 28, 92-96.

28

Oumellal, Y.; Zaïdi, W.; Bonnet, J. -P.; Cuevas, F.; Latroche, M.; Zhang, J.; Bobet, J. L.; Rougier, A.; Aymard, L. Reactivity of TiH2 hydride with lithium ion: Evidence for a new conversion mechanism. Int. J. Hydrogen Energy 2012, 37, 7831-7835.

File
12274_2014_667_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 September 2014
Revised: 18 November 2014
Accepted: 30 November 2014
Published: 21 January 2015
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We gratefully acknowledge the financial support received from the National Natural Science Foundation of China (Nos. 51222101, 51171170, and 51025102), the Ministry of Science and Technology of China (No. 2010CB631304), the Research Fund for the Doctoral Program of Higher Education of China (Nos. 20130101110080 and 20130101130007), the Program for Innovative Research Teams in Universities of the Ministry of Education of China (No. IRT13037), and the Fundamental Research Funds for the Central Universities (No. 2014XZZX003-08).

Return