Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Adding a small amount of nanocrystalline TiO2@C (TiO2 supported on nanoporous carbon) composite dramatically decreases the operating temperatures and improves the reaction kinetics for hydrogen storage in NaAlH4. The nanocrystalline TiO2@C composite synthesized at 900 ℃ (referred as TiO2@C-900) exhibits superior catalytic activity to other catalyst-containing samples. The onset dehydrogenation temperature of the TiO2@C-900-containing sample is lowered to 90 ℃; this is 65 ℃ lower than that of the pristine sample. The dehydrogenated sample is completely hydrogenated at 115 ℃ and 100 bar of hydrogen pressure with a hydrogen capacity of 4.5 wt.%. Structural analyses reveal that the Ti undergoes a reduction process of Ti4+→Ti3+→Ti2+→Ti during the ball milling and heating processes, and further converts to Ti hydrides or forms Ti-Al species after rehydrogenation. The catalytic activities of Ti-based catalytic species decrease in the order Al-Ti-species > TiH0.71 > TiH2 > TiO2. This understanding guides further improvement in hydrogen storage properties of metal alanates using nanocrystalline transition metal-based additives.
Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353-358.
Li, L.; Xu, C. C.; Chen, C. C.; Wang. Y. J.; Jiao, L. F.; Yuan, H. T. Sodium alanate system for efficient hydrogen storage. Int. J. Hydrogen Energy 2013, 21, 8798-8812.
Züttel, A.; Wenger, P.; Rentsch, S.; Sudan, P.; Mauron, Ph.; Emmenegger, Ch. LiBH4 a new hydrogen storage material. J. Power Sources 2003, 118, 1-7.
Cui, J.; Liu, J. W.; Wang, H.; Ouyang, L. Z.; Sun, D. L.; Zhu, M.; Yao, X. D. Mg-TM (TM: Ti, Nb, V, Co, Mo or Ni) core-shell like nanostructures: Synthesis, hydrogen storage performance and catalytic mechanism. J. Mater. Chem. A 2014, 2, 9645-9655.
Chlopek, K.; Frommen, C.; Léon, A.; Zabara, O.; Fichtner, M. Synthesis and properties of magnesium tetrahydroborate, Mg(BH4)2. J. Mater. Chem. 2007, 17, 3496-3503.
Kim, J. H.; Jin, S. A.; Shim, J. H.; Cho, Y. W. Thermal decomposition behavior of calcium borohydride Ca(BH4)2. J. Alloys Compd. 2008, 461, L20-L22.
Bogdanović, B.; Schwickardi, M. Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J. Alloy Compd. 1997, 253, 1-9.
Bogdanović, B.; Felderhoff, M.; Pommerin, A.; Schüth, F.; Spielkamp, N. Advanced hydrogen-storage materials based on Sc-, Ce-, and Pr-doped NaAlH4. Adv. Mater. 2006, 18, 1198-1201.
Hu, J. J.; Ren, S. H.; Witter, R.; Fichtner, M. Catalytic influence of various cerium precursors on the hydrogen sorption properties of NaAlH4. Adv. Energy Mater. 2012, 2, 560-568.
Rafi, U. D.; Qu, X. H.; Li, P.; Zhang, L.; Wan, Q.; Iqbal, M. Z.; Rafique, M. Y.; Farooq, M. H.; Islam, U. D. Superior catalytic effects of Nb2O5, TiO2 and Cr2O3 nanoparticles in improving the hydrogen sorption properties of NaAlH4. J. Phys. Chem. C 2012, 116, 11924-11938.
Suttisawat, Y.; Jannatisin, V.; Rangsunvighit, P.; Kitiyanan, B.; Muangsin, N.; Kulprathipanja, S. Understanding the effect of TiO2, VCl3, and HfCl4 on hydrogen desorption/ absorption of NaAlH4. J. Power Sources 2007, 163, 997- 1002.
Zhang, X.; Liu, Y. F.; Pang, Y. P.; Gao, M. X.; Pan, H. G. Significantly improved kinetics, reversibility and cycling stability for hydrogen storage in NaAlH4 with the Ti-incorporated metal organic framework MIL-125(Ti). J. Mater. Chem. A 2014, 2, 1847-1854.
Gross, K.; Thomas, G. J.; Jensen, C. M. Catalyzed alanates for hydrogen storage. J. Alloys Compd. 2002, 332, 683-690.
Liu, Y. F.; Liang, C.; Zhou, H.; Gao, M. X.; Pan, H. G.; Wang, Q. D. A novel catalyst precursor K2TiF6 with remarkable synergetic effects of K, Ti and F together on reversible hydrogen storage of NaAlH4. Chem. Commun. 2011, 47, 1740-1742.
Pitt, M. P.; Vullum, P. E.; Sørby, M. H.; Sulic, M. P.; Jensen, C. M.; Walmsley, J. C.; Holmestad, R.; Hauback, B. C. Structural properties of the nanoscopic Al85Ti15 solid solution observed in the hydrogen-cycled NaAlH4 + 0.1TiCl3 system. Acta Mater. 2008, 56, 4691-4701.
Wang, P.; Kang, X. D.; Cheng, H. M. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4. J. Phys. Chem. B 2005, 109, 20131-20136.
Frankcombe, T. J. Proposed mechanisms for the catalytic activity of Ti in NaAlH4. Chem. Rev. 2012, 112, 2164-2178.
Xiong, R. J.; Sang, G.; Yan, X. Y.; Zhang, G. H.; Ye, X. Q. Improvement of the hydrogen storage kinetics of NaAlH4 with Ti-loaded high-ordered mesoporous carbons (Ti-OMCs) by melt infiltration. J. Mater. Chem. 2012, 22, 17183-17189.
Cento, C.; Gislon, P.; Bilgili, M.; Masci, A.; Zheng, Q.; Prosini, P. P. How carbon affects hydrogen desorption in NaAlH4 and Ti-doped NaAlH4. J. Alloys Compd. 2007, 437, 360-366.
Zheng, S. Y.; Fang, F.; Zhou, G. Y.; Chen, G. R.; Ouyang, L. Z.; Zhu, M.; Sun, D. L. Hydrogen storage properties of space-confined NaAlH4 nanoparticles in ordered mesoporous silica. Chem. Mater. 2008, 20, 3954-3958.
Stavila, V.; Bhakta, R. K.; Alam, T. M.; Majzoub, E. H.; Allendorf, M. D. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor. ACS Nano. 2012, 6, 9807-9817.
Liu, Y. F.; Yang, Y. J.; Zhou, Y. F.; Zhang, Y.; Gao, M. X.; Pan, H. G. Properties and mechanisms of the Mg(BH4)2- NaAlH4 system. Int. J. Hydrogen Energy 2012, 37, 17137- 17145.
Dan-Hardi, M.; Serre, C.; Frot, T.; Rozes, L.; Maurin, G.; Sanchez, C.; Férey, G. A new photoactive crystalline highly porous titanium (IV) dicarboxylate. J. Am. Chem. Soc. 2009, 131, 10857-10859.
Zhang, H. Z.; Banfield, J. F. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 2000, 104, 3481-3487.
Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew. Chem. Int. Ed. 2008, 47, 1766-1769.
Gu, J.; Gao, M. X.; Pan, H. G.; Liu, Y. F.; Li, B.; Yang, Y. J.; Liang, C.; Fu, H. L.; Guo. Z. X. Improved hydrogen storage performance of Ca(BH4)2: A synergetic effect of porous morphology and in situ formed TiO2. Energy Environ. Sci. 2013, 6, 847-858.
Werfel. F.; Brümmer, O. Corundum structure oxides studied by XPS. Phys. Scr. 1983, 28, 92-96.
Oumellal, Y.; Zaïdi, W.; Bonnet, J. -P.; Cuevas, F.; Latroche, M.; Zhang, J.; Bobet, J. L.; Rougier, A.; Aymard, L. Reactivity of TiH2 hydride with lithium ion: Evidence for a new conversion mechanism. Int. J. Hydrogen Energy 2012, 37, 7831-7835.