Journal Home > Volume 8 , Issue 2

Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for a wide variety of applications. Herein, we present a facile, general, and cost-effective strategy for the synthesis of noble metal nanoparticles with hollow structures, which is based on the inside-out diffusion of Ag in solid-state core-shell nanoparticles. This approach starts with the preparation of core-shell nanoparticles with Ag residing in the core region, which are then loaded on a solid substrate and aged in air to allow the inside-out diffusion of Ag from the core region, leading to the formation of monometallic or alloy noble metal nanoparticles with a hollow interior. The synthesis was carried out at room temperature and could be achieved on different solid substrates. In particular, the inside-out diffusion of Ag calls for specific concern with respect to the evaluation of the catalytic performance of the Ag-based core-shell nanoparticles since it may potentially interfere with the physical and chemical properties of the core-shell particles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanoscale noble metals with a hollow interior formed through inside-out diffusion of silver in solid-state core-shell nanoparticles

Show Author's information Pengfei Hou1,2Penglei Cui2Hui Liu2Jianling Li1( )Jun Yang2( )
State Key Laboratory of Advanced MetallurgyUniversity of Science and Technology of Beijing30 College RoadBeijing100083China
State Key Laboratory of Multiphase Complex SystemsInstitute of Process EngineeringChinese Academy of SciencesBeijing100190China

Abstract

Noble metal nanoparticles with hollow interiors and customizable shell compositions have immense potential for a wide variety of applications. Herein, we present a facile, general, and cost-effective strategy for the synthesis of noble metal nanoparticles with hollow structures, which is based on the inside-out diffusion of Ag in solid-state core-shell nanoparticles. This approach starts with the preparation of core-shell nanoparticles with Ag residing in the core region, which are then loaded on a solid substrate and aged in air to allow the inside-out diffusion of Ag from the core region, leading to the formation of monometallic or alloy noble metal nanoparticles with a hollow interior. The synthesis was carried out at room temperature and could be achieved on different solid substrates. In particular, the inside-out diffusion of Ag calls for specific concern with respect to the evaluation of the catalytic performance of the Ag-based core-shell nanoparticles since it may potentially interfere with the physical and chemical properties of the core-shell particles.

Keywords: core-shell, nanoparticle, solid-state, hollow, noble metal, inside-out diffusion

References(49)

1

Cheng, F. Y.; Ma, H.; Li, Y. M.; Chen, J. Ni1-xPtx (x = 0-0.12) hollow spheres as catalysts for hydrogen generation from ammonia borane. Inorg. Chem. 2007, 46, 788-794.

2

Peng, Z. M.; Wu, J. B.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of platinum hollow and platinum-on-silver nanoparticles. Chem. Mater. 2010, 22, 1098-1106.

3

Bai, F.; Sun, Z. C.; Wu, H. M.; Haddad, R. E.; Xiao, X. Y.; Fan, H. Y. Templated photocatalytic synthesis of well-defined platinum hollow nanostructures with enhanced catalytic performance for methanol oxidation. Nano Lett. 2011, 11, 3759-3762.

4

Liang, H. -P.; Zhang, H. -M.; Hu, J. -S.; Guo, Y. -G.; Wan, L. -J.; Bai, C. -L. Pt hollow nanospheres: Facile synthesis and enhanced electrocatalysts. Angew. Chem. Int. Ed. 2004, 43, 1540-1543.

5

Yang, J.; Lee, J. Y.; Too, H. -P.; Valiyaveettil, S. A bis(p- sulfonatophenyl)phenylphosphine-based synthesis of hollow Pt nanospheres. J. Phys. Chem. B 2006, 110, 125-129.

6

Wang, L.; Yamauchi, Y. Metallic nanocages: Synthesis of bimetallic Pt-Pd hollow nanoparticles with dendritic shells by selective chemical etching. J. Am. Chem. Soc. 2013, 135, 16762-16765.

7

Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111-1114.

8

Caruso, F.; Shi, X.; Caruso, R. A.; Susha, A. Hollow titania spheres from layered precursor deposotion on sacrificial colloidal core particles. Adv. Mater. 2001, 13, 740-744.

DOI
9

Schmidt, H. T.; Ostafin, A. E. Liposome directed growth of calcium phosphate nanoshells. Adv. Mater. 2002, 14, 532- 535.

DOI
10

Yang, Z. Z.; Niu, Z. W.; Lu, Y. F.; Hu, Z. B.; Han, C. C. Templated synthesis of inorganic hollow spheres with a tunable cavity size onto core-shell gel particles. Agnew. Chem. Int. Ed. 2003, 42, 1943-1945.

11

Lou, X. W.; Yuan, C. L.; Archer, L. A. Shell-by-shell synthesis of tin oxide hollow colloids with nanoarchitectured walls: Cavity size tuning and functionalization. Small 2007, 3, 261-265.

12

Peng, B.; Meng, X. W.; Tang, F. X.; Ren, X. L.; Chen, D.; Ren, J. General synthesis and optical properties of monodisperse multifunctional metal-ion-doped TiO2 hollow particles. J. Phys. Chem. C 2009, 113, 20240-20245.

13

Wang, Y. Q.; Tang, C. J.; Deng, Q.; Liang, C. H.; Ng, D. H. L.; Kwong, F. -L.; Wang, H. Q.; Cai, W. P.; Zhang, L. D.; Wang, G. Z. A versatile method for controlled synthesis of porous hollow spheres. Langmuir 2010, 26, 14830-14834.

14

Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanoboxes with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738-4741.

15

Nai, J. W.; Tian, Y.; Guan, X.; Guo, L. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. J. Am. Chem. Soc. 2013, 135, 16082-16091.

16

Chen, H. M.; Liu, R. -S.; Lo, M. -Y.; Chang, S. -C.; Tsai, L. -D.; Peng, Y. -M.; Lee, J. -F. Hollow platinum spheres with nano- channels: Synthesis and enhanced catalysis for oxygen reduction. J. Phys. Chem. C 2008, 112, 7522-7526.

17

Skrabalak, S. E.; Chen, J. Y.; Sun, Y. G.; Lu, X. M.; Au, L.; Cobley, C. M.; Xia, Y. N. Gold nanocages: Synthesis, properties, and applications. Acc. Chem. Res. 2008, 41, 1587-1595.

18

González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. Science 2011, 334, 1377-1380.

19

Yin, Y. D.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, P. A. Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 2004, 304, 711-714.

20

Zeng, H. C. Synthetic architecture of interior space for inorganic nanostructures. J. Mater. Chem. 2006, 16, 649-662.

21

Zeng, H. C. Ostwald ripening: A synthetic approach for hollow nanomaterials. Curr. Nanosci. 2007, 3, 177-181.

22

Caruso, F. Hollow capsule processing through colloidal templating and self-assembly. Chem. Eur. J. 2000, 6, 413-419.

DOI
23

Macdonald, J. E.; Sadan, M. B.; Houben, L.; Popov, I.; Banin, U. Hybrid nanoscale inorganic cages. Nat. Mater. 2010, 9, 810-815.

24

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

25

Han, L.; Liu, H.; Cui, P. L.; Peng, Z. J.; Zhang, S. J.; Yang, J. Alloy Cu3Pt nanoframes through the structure evolution in Cu-Pt nanoparticles with a core-shell construction. Sci. Rep. 2014, 4, 6414.

26

Zhdanov, V. P.; Kasemo, B. On the feasibility of strain- induced formation of hollows during hydriding or oxidation of metal nanoparticles. Nano Lett. 2009, 9, 2172-2176.

27

Lou, X. W.; Archer, L. A.; Yang, Z. C. Hollow micro-/ nanostructures: Synthesis and applications. Adv. Mater. 2008, 20, 3987-4019.

28

Zhao, Y.; Jiang, L. Hollow micro/nanomaterials with multilevel interior structures. Adv. Mater. 2009, 21, 3621-3638.

29

Liu, H.; Qu, J. L.; Chen, Y. F.; Li, J. Q.; Ye, F.; Lee, J. Y.; Yang, J. Hollow and cage-bell structured nanomaterials of noble metals. J. Am. Chem. Soc. 2012, 134, 11602-11610.

30

Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733-1739.

31

Zheng, Y. Q.; Zeng, J.; Ruditskiy, A.; Liu, M. C.; Xia, Y. N. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 2014, 26, 22-33.

32

Glover, R. D.; Miller, J. M.; Hutchison, J. E. Generation of metal nanoparticles from silver and copper Objects: Nanoparticle dynamics on surfaces and potential sources of nanoparticles in the environment. ACS Nano 2011, 5, 8950- 8957.

33

Huang, H. H.; Ni, X. P.; Loy, G. L.; Chew, C. H.; Tan, K. L.; Loh, F. C.; Deng, J. F.; Xu, G. Q. Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 1996, 12, 909-912.

34

Akaighe, N.; MacCuspie, R. I.; Navarro, D. A.; Aga, D. S.; Banerjee, S.; Sohn, M.; Sharma, V. K. Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ. Sci. Technol. 2011, 45, 3895-3901.

35

Ostwald, W. Studien uber die bildung und umwandlung fester korper. Z. Phys. Chem. 1897, 22, 289-330.

36

Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Formation of asymmetric one-sided metal-tipped semiconductor nanocrystal dots and rods. Nat. Mater. 2005, 4, 855-863.

37

Huang, R.; Zhu, A. M.; Gong, Y.; Zhang, Q. G.; Liu, Q. L. Facile method to prepare monodispersed hollow PtAu sphere with TiO2 colloidal sphere as a template. Ind. Eng. Chem. Res. 2013, 52, 7432-7438.

38

Liu, H.; Ye, F.; Yang, J. A universal and cost-effective approach to the synthesis of carbon-supported noble metal nanoparticles with hollow interiors. Ind. Eng. Chem. Res. 2014, 53, 5925-5931.

39

Zhang, H.; Jin, M. S.; Wang, J. G.; Li, W. Y.; Camargo, P. H. C.; Kim, M. J.; Yang, D. R.; Xie, Z. X.; Xia, Y. N. Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J. Am. Chem. Soc. 2011, 133, 6078-6089.

40

Mohl, M.; Dobo, D.; Kukovecz, A.; Konya, Z.; Kordas, K.; Wei, J. Q.; Vajtai, R.; Ajayan, P. M. Formation of CuPd and CuPt bimetallic nanotubes by galvanic replacement reaction. J. Phys. Chem. C 2011, 115, 9403-9409.

41
Wagner, C. D.; Naumkin, A. V.; Kraut-Vass, A.; Allison, J. W.; Powell, C. J.; Rumble, J. R. NIST standard reference database 20, version 3.2 (web version).
42

Parsons, R.; VanderNoot, T. The oxidation of small organic molecules: A survey of recent fuel cell related research. J. Electroanal. Chem. Interfacial Electrochem. 1988, 257, 9-45.

43

de Brujin, F. A.; Dam, V. A. T.; Janssen, G. J. M. Review: Durability and degradation issues of PEM fuel cell components. Fuel Cells 2008, 8, 3-22.

44

Antolini, E.; Lopes, T.; Gonzalez, E. R. An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J. Alloys Compd. 2008, 461, 253-262.

45

Yang, J. H.; Yang, J.; Ying, J. Y. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction. ACS Nano 2012, 6, 9373-9382.

46

Zhang, Q.; Guo, X.; Liang, Z. X.; Zeng, J. H.; Yang, J.; Liao, S. J. Hybrid PdAg alloy-Au nanorods: Controlled growth, optical properties and electrochemical catalysis. Nano Res. 2013, 6, 571-580.

47

Hu, X. N.; Zhao, Y. Y.; Hu, Z. J.; Saran, A.; Hou, S.; Wen, T.; Liu, W. Q.; Ji, Y. L.; Jiang, X. Y.; Wu, X. C. Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure. Nano Res. 2013, 6, 822-835.

48

Liu, H.; Yang, J. Bimetallic Ag-hollow Pt heterodimers via inside-out migration of Ag in core-shell Ag-Pt nanoparticles at elevated temperature. J. Mater. Chem. A 2014, 2, 7075- 7081.

49

Liu, H.; Ye, F.; Yao, Q. F.; Cao, H. B.; Xie, J. P.; Lee, J. Y.; Yang, J. Stellated Ag-Pt bimetallic nanoparticles: An effective platform for catalytic activity tuning. Sci. Rep. 2014, 4, 3969.

File
12274_2014_663_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 September 2014
Revised: 11 November 2014
Accepted: 30 November 2014
Published: 21 January 2015
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

Financial support from the 100 Talents Program of the Chinese Academy of Sciences, the National Natural Science Foundation of China (Nos. 21173226 and 21376247), and the State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences (No. MPCS-2012-A-11) is gratefully acknowledged.

Return