Journal Home > Volume 8 , Issue 1

The power conversion efficiency of organometallic perovskite-based solar cells has skyrocketed in recent years. Intensive efforts have been made to prepare high-quality perovskite films tailored to various device configurations. Planar heterojunction devices have achieved record efficiencies; however, the preparation of perovskite films for planar junction devices requires the use of expensive vacuum facilities and/or the fine control of experimental conditions. Here, we demonstrate a facile preparation of perovskite films using solid-state chemistry. Solid-state precursor thin films of CH3NH3I and PbI2 are brought into contact with each other and allowed to react via thermally accelerated diffusion. The resulting perovskite film displays good optical absorption and a smooth morphology. Solar cells based on these films show an average efficiency of 8.7% and a maximum efficiency of 10%. The solid-state synthesis of organometallic perovskite can also be carried out on flexible plastic substrates. Using this method on a PET/ITO substrate produces devices with an efficiency of 3.2%. Unlike existing synthetic methods for organometallic perovskite films, the solid-state reaction method does not require the use of orthogonal solvents or careful adjustment of reaction conditions, and thus shows good potential for mass production in the future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry

Show Author's information Lei Chen1,2,§Feng Tang2,§Yixin Wang2,3Shan Gao2Weiguo Cao1Jinhua Cai2( )Liwei Chen2( )
Department of ChemistryShanghai UniversityShanghai200444China
i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhouJiangsu215123China
Nano Science and Technology InstituteUniversity of Science and Technology of ChinaSuzhouJiangsu215123China

§ These authors contributed equally to this work.

Abstract

The power conversion efficiency of organometallic perovskite-based solar cells has skyrocketed in recent years. Intensive efforts have been made to prepare high-quality perovskite films tailored to various device configurations. Planar heterojunction devices have achieved record efficiencies; however, the preparation of perovskite films for planar junction devices requires the use of expensive vacuum facilities and/or the fine control of experimental conditions. Here, we demonstrate a facile preparation of perovskite films using solid-state chemistry. Solid-state precursor thin films of CH3NH3I and PbI2 are brought into contact with each other and allowed to react via thermally accelerated diffusion. The resulting perovskite film displays good optical absorption and a smooth morphology. Solar cells based on these films show an average efficiency of 8.7% and a maximum efficiency of 10%. The solid-state synthesis of organometallic perovskite can also be carried out on flexible plastic substrates. Using this method on a PET/ITO substrate produces devices with an efficiency of 3.2%. Unlike existing synthetic methods for organometallic perovskite films, the solid-state reaction method does not require the use of orthogonal solvents or careful adjustment of reaction conditions, and thus shows good potential for mass production in the future.

Keywords: perovskite solar cells, solid-state chemistry, planar heterojunction, flexible substrates

References(31)

1

Im, J. -H.; Lee, C. -R.; Lee, J. -W.; Park, S. -W.; Park, N. -G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 2011, 3, 4088–4093.

2

Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso- superstructured organometal halide perovskites. Science 2012, 338, 643–647.

3

Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

4

Noh, J. H.; Jeon, N. J.; Choi, Y. C.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/co- complex as hole-transporting material. J. Mater. Chem. A 2013, 1, 11842–11847.

5

Bai, S.; Wu, Z. W.; Wu, X. J.; Jin, Y. Z.; Zhao, N.; Chen, Z. H.; Mei, Q. Q.; Wang, X.; Ye, Z. Z.; Song, T.; et al. High- performance planar heterojunction perovskite solar cells: Preserving long charge carrier diffusion lengths and interfacial engineering. Nano Res. 2014, 12, 1749–1758.

6

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. -B.; Duan, H. -S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

7

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

8

Xing, G. H.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Graetzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic- inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

9

Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.

10

Docampo, P.; Ball, J. M.; Darwich, M.; Eperon, G. E.; Snaith, H. J. Efficient organometal trihalide perovskite planar- heterojunction solar cells on flexible polymer substrates. Nat. Commun. 2013, 4, 2761.

11

Kim, H. -S.; Im, S. H.; Park, N. -G. Organolead halide perovskite: New horizons in solar cell research. J. Phys. Chem. C 2014, 118, 5615–5625.

12

Liang, P. -W.; Liao, C. -Y.; Chueh, C. -C.; Zuo, F.; Williams, S. T.; Xin, X. -K.; Lin, J.; Jen, A. K. Y. Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 2014, 26, 3748–3754.

13

Eperon, G. E.; Burlakov, V. M.; Docampo, P.; Goriely, A.; Snaith, H. J. Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 2014, 24, 151–157.

14

Dualeh, A.; Tetreault, N.; Moehl, T.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Effect of annealing temperature on film morphology of organic–inorganic hybrid perovskite solid- state solar cells. Adv. Funct. Mater. 2014, 24, 3250–3258.

15

Chen, Q.; Zhou, H. P.; Hong, Z. R.; Luo, S.; Duan, H. -S.; Wang, H. -H.; Liu, Y. S.; Li, G.; Yang, Y. Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 2014, 136, 622–625.

16

Liu, M. Z.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501, 395–398.

17

Liu, D. Y.; Kelly, T. L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138.

18

Burschka, J.; Pellet, N.; Moon, S. -J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite- sensitized solar cells. Nature 2013, 499, 316–319.

19

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

20

Yu, Y. -Y.; Chiang, R. -S.; Hsu, H. -L.; Yang, C. -C.; Chen, C. -P. Perovskite photovoltaics featuring solution-processable TiO2 as an interfacial electron-transporting layer display to improve performance and stability. Nanoscale 2014, 6, 11403–11410.

21

Nikitine, S.; Ringeissen, J.; Schmittb, J.; Biellmann, J. Etude spectrophotomètriquedes raies du spectre excitonique ordinaire de PbI2 A 4, 2oK. J. Phys. Chem. Solids 1964, 25, 951–960.

22

Gähwiller, C.; Harbeke, G. Excitonic effects in theelectroreflectance of lead iodide. Phys. Rev. 1969, 185, 1141– 1149.

23

Kim, H. -S.; Lee, C. -R.; Im, J. -H.; Lee, K. -B.; Moehl, T.; Marchioro, A.; Moon, S. -J.; Humphry-Baker, R.; Yum, J. -H.; Moser, J. E.; et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

24

Ha, S. T.; Liu, X. F.; Zhang, Q.; Giovanni, D.; Sum, T. C.; Xiong, Q. H. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: Towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2014, 2, 838-844.

25

Dennler, G.; Scharber, M. C.; Brabec, C. J. Polymer- fullerene bulk-heterojunction solar cells. Adv. Mater. 2009, 21, 1323–1338.

26

Zhang, Q.; Wan, X. J.; Xing, F.; Huang, L.; Long, G. K.; Yi, N. B.; Ni, W.; Liu, Z. B.; Tian, J. G.; Chen, Y. S. Solution- processable graphene mesh transparent electrodes for organic solar cells. Nano Res. 2013, 6, 478–484.

27

Xiao, Z. G.; Bi, C.; Shao, Y. C.; Dong, Q. F.; Wang, Q.; Yuan, Y. B.; Wang, C. G.; Gao, Y. L.; Huang, J. S. Efficient, highyield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 2014, 7, 2619–2623.

28

Sun, S. Y.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G. C.; Sum, T. C.; Lam, Y. M. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 2014, 7, 399–407.

29

Kim, H. -B.; Choi, H.; Jeong, J.; Kim, S.; Walker, B.; Song, S.; Kim, J. Y. Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale 2014, 6, 6679–6683.

30

Hsu, H. -L.; Chen, C. -P.; Chang, J. -Y.; Yu, Y. -Y.; Shen, Y. -K. Two-step thermal annealing improves the morphology of spin-coated films for highly efficient perovskite hybrid photovoltaics. Nanoscale 2014, 6, 10281–10288.

31

Caballero, R.; Guillen, C. Comparative studies between Cu–Ga–Se and Cu–In–Se thin film systems. Thin Solid Films 2002, 403, 107–111.

File
12274_2014_662_MOESM1_ESM.pdf (899 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 September 2014
Revised: 07 November 2014
Accepted: 30 November 2014
Published: 03 January 2015
Issue date: January 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 91233104, and 61376063), and the National Basic Research Programof China (No. 2010CB934700). L. C. acknowledges the support from Jiangsu Provincial Natural Science Foundation (No. BK20130006).

Return