Journal Home > Volume 8 , Issue 2

Among the important optoelectronic devices, ultraviolet (UV) photodetectors show wide applications in fire monitoring, biological analysis, environmental sensors, space exploration, and UV irradiation detections. Research interest has focused on the utilization of one-dimensional (1D) metal oxide nanostructures to build advanced UV photodetectors through various processes. With large surface-to-volume ratio and well-controlled morphology and composition, 1D metal oxide nanostructures are regarded as promising candidates as components for building photodetectors with excellent sensitivity, superior quantum efficiency, and fast response speed. This article reviews the latest achievements with 1D metal oxide nanostructures reported over the past five years and their applications in UV light detection. It begins with an introduction of 1D metal oxide nanostructures, and the significance, key parameters and types of photodetectors. Then we present several kinds of widely-studied 1D nanostructures and their photodetection performance, focusing on binary oxides with wide-bandgap (such as ZnO, SnO2, Ga2O3, Nb2O5, and WO3) and ternary oxides (such as Zn2SnO4, Zn2GeO4, and In2Ge2O7). Finally, the review concludes with our perspectives and outlook on future research directions in this field.


menu
Abstract
Full text
Outline
About this article

Nanoscale ultraviolet photodetectors based on onedimensional metal oxide nanostructures

Show Author's information Wei Tian( )Hao LuLiang Li( )
College of PhysicsOptoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215006China

Abstract

Among the important optoelectronic devices, ultraviolet (UV) photodetectors show wide applications in fire monitoring, biological analysis, environmental sensors, space exploration, and UV irradiation detections. Research interest has focused on the utilization of one-dimensional (1D) metal oxide nanostructures to build advanced UV photodetectors through various processes. With large surface-to-volume ratio and well-controlled morphology and composition, 1D metal oxide nanostructures are regarded as promising candidates as components for building photodetectors with excellent sensitivity, superior quantum efficiency, and fast response speed. This article reviews the latest achievements with 1D metal oxide nanostructures reported over the past five years and their applications in UV light detection. It begins with an introduction of 1D metal oxide nanostructures, and the significance, key parameters and types of photodetectors. Then we present several kinds of widely-studied 1D nanostructures and their photodetection performance, focusing on binary oxides with wide-bandgap (such as ZnO, SnO2, Ga2O3, Nb2O5, and WO3) and ternary oxides (such as Zn2SnO4, Zn2GeO4, and In2Ge2O7). Finally, the review concludes with our perspectives and outlook on future research directions in this field.

Keywords: photodetector, metal oxide, 1D nanostructures, UV light, nanodevices

References(98)

1

Li, Y.; Qian, F.; Xiang, J.; Lieber, C. M. Nanowire electronic and optoelectronic devices. Mater. Today 2006, 9, 18-27.

2

Wang, Z. L. ZnO nanowire and nanobelt platform for nanotechnology. Mater. Sci. Eng. R 2009, 64, 33-71.

3

Lieber, C. M.; Wang, Z. L. Functional nanowires. MRS Bull. 2007, 32, 99-108.

4

Liang. B; Huang, H. T.; Liu, Z.; Chen, G.; Yu, G.; Luo, T.; Liao, L.; Chen, D.; Shen, G. Z. Ladder-like metal oxide nanowires: Synthesis, electrical transport, and enhanced light absorption properties. Nano Res. 2014, 7, 272-283.

5

Yu, R. M.; Pan, C. F.; Hu, Y. F.; Li, L.; Liu, H. F.; Liu, W.; Chua, S.; Chi, D. Z.; Wang, Z. L. Enhanced performance of GaN nanobelt-based photodetectors by means of piezotronic effects. Nano Res. 2013, 6, 758-766.

6

Jain, V.; Nowzari, A.; Wallentin, J.; Borgström, M. T.; Messing, M. E.; Asoli, D.; Graczyk, M.; Witzigmann, B.; Capasso, F.; Samuelson, L.; et al. Study of photocurrent generation in InP nanowire-based p+-i-n+ photodetectors. Nano Res. 2014, 7, 544-552.

7

Liu, Z.; Luo, T.; Liang, B.; Chen, G.; Yu, G.; Xie, X. M.; Chen, D.; Shen, G. Z. High-detectivity InAs nanowire photodetectors with spectral response from ultraviolet to near-infrared. Nano Res. 2013, 6, 775-783.

8

Devan, R. S.; Patil, R. A.; Lin, J. -H.; Ma, Y. -R. One- dimensional metal-oxide nanostructures: Recent developments in synthesis, characterization, and applications. Adv. Funct. Mater. 2012, 22, 3326-3370.

9

Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan. H. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353-389.

10

Lu, J. G.; Chang, P. C.; Fan, Z. Y. Quasi-one-dimensional metal oxide materials-Synthesis, properties and applications. Mater. Sci. Eng. R 2006, 52, 49-91.

11

Razeghi, M.; Rogalski, A. Semiconductor ultraviolet detectors. J. Appl. Phys. 1996, 79, 7433.

12

Li, Y. B.; Valle, F. D.; Simonnet, M.; Yamada, I.; Delaunay, J. -J. High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology 2009, 20, 045501.

13

Chen, M.; Hu, L. F.; Xu, J. X.; Liao, M. Y.; Wu, L. M.; Fang, X. S. ZnO hollow-sphere nanofilm-based high- performance and low-cost photodetector. Small 2011, 7, 2449-2453.

14

Konstantatos, G.; Sargent, E. H. Nanostructured materials for photon detection. Nat. Nanotechnol. 2010, 5, 391-400.

15

Fang, X. S.; Bando, Y.; Liao, M. Y.; Zhai, T. Y.; Gautam, U. K.; Li, L.; Koide, Y.; Golberg, D. An efficient way to assemble ZnS nanobelts as ultraviolet-light sensors with enhanced photocurrent and stability. Adv. Funct. Mater. 2010, 20, 500-508.

16

Kind, H.; Yan, H. Q.; Messer, B.; Law, M.; Yang, P. D. Nanowire ultraviolet photodetectors and optical switches. Adv. Mater. 2002, 14, 158-160.

DOI
17

Soci, C.; Zhang, A.; Xiang, B.; Dayeh, S. A.; Aplin, D. P. R.; Park, J.; Bao, X. Y.; Lo, Y. H.; Wang, D. ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 2007, 7, 1003-1009.

18

Fang, X. S.; Bando, Y.; Liao, M. Y.; Gautam, U. K.; Zhi, C. Y.; Dierre, B.; Liu, B. D.; Zhai, T. Y. Sekiguchi, T.; Koide, Y.; et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater. 2009, 21, 2034-2039.

19

Hu, L. F.; Yan, J.; Liao, M. Y.; Xiang, H. J.; Gong, X. G.; Zhang, L. D.; Fang, X. S. An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 2012, 24, 2305-2309.

20

Cho, H. D.; Zakirov, A. S.; Yuldashev, S. U.; Ahn, C. W.; Yeo, Y. K.; Kang, T. W. Photovoltaic device on a single ZnO nanowire p-n homojunction. Nanotechnology 2012, 23, 115401.

21

Liu, K. W.; Sakurai, M.; Liao, M. Y.; Aono, M. Giant improvement of the performance of ZnO nanowire photodetectors by Au nanoparticles. J. Phys. Chem. C 2010, 114, 19835-19839.

22

Zhang, F.; Ding, Y.; Zhang, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano 2012, 6, 9229-9236.

23

Bai, S.; Wu, W. W.; Qin, Y.; Cui, N. Y.; Bayerl, D. J.; Wang, X. D. High-performance integrated ZnO nanowire UV sensors on rigid and flexible substrates. Adv. Funct. Mater. 2011, 21, 4464-4469.

24

Manekkathodi, A.; Lu, M. -Y.; Wang, C. W.; Chen, L. -J. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater. 2010, 22, 4059-4063.

25

Zhang, F.; Niu, S. M.; Guo, W. X.; Zhu, G.; Liu, Y.; Zhang, X. L.; Wang, Z. L. Piezo-phototronic effect enhanced visible/UV photodetector of a carbon-fiber/ZnO-CdS double- shell microwire. ACS Nano. 2013, 7, 4537-4544.

26

Yang, Q.; Guo, X.; Wang, W. H.; Zhang, Y.; Xu, S.; Lien, D. H.; Wang, Z. L. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. ACS Nano 2010, 4, 6285-6291.

27

Zhou, J.; Gu, Y. D.; Hu, Y. F.; Mai, W. J.; Yeh, P. H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Appl. Phys. Lett. 2009, 94, 191103.

28

Tian, W.; Zhang, C.; Zhai, T. Y.; Li, S. L.; Wang, X.; Liu, J. W.; Jie, X.; Liu, D. Q.; Liao, M. Y.; Koide, Y.; et al. Flexible ultraviolet photodetectors with broad photoresponse based on branched ZnS-ZnO heterostructure nanofilms. Adv. Mater. 2014, 26, 3088-3093.

29

Tian, W.; Zhai, T. Y.; Zhang, C.; Li, S. L.; Wang, X.; Liu, F.; Liu, D. Q.; Cai, X. K.; Tsukagoshi, K.; Golberg, D.; et al. Low-cost fully transparent ultraviolet photodetectors based on electrospun ZnO-SnO2 heterojunction nanofibers. Adv. Mater. 2013, 25, 4625-4630.

30

Sun, K.; Jing, Y.; Park, N.; Li, C.; Bando, Y.; Wang, D. L. Solution synthesis of large-scale, high-sensitivity ZnO/Si hierarchical nanoheterostructure photodetectors. J. Am. Chem. Soc. 2010, 132, 15465-15467.

31

Yu, H. B.; Azhar, E. A.; Belagodu, T.; Lim, S.; Dey, S. ZnO nanowire based visible-transparent ultraviolet detectors on polymer substrates. J. Appl. Phys. 2012, 111, 102806.

32

Jin, Z. W.; Wang, J. Z. Flexible high-performance ultraviolet photoconductor with zinc oxide nanorods and 8-hydroxyquinoline. J. Mater. Chem. C 2014, 2, 1966-1970.

33

Yang, Z.; Wang, M. Q.; Song, X. H.; Yan, G. D.; Ding, Y. C.; Bai, J. B. High-performance ZnO/Ag nanowire/ZnO composite film UV photodetectors with large area and low operating voltage. J. Mater. Chem. C 2014, 2, 4312-4319.

34

Liu, X.; Gu, L. L.; Zhang, Q. P.; Wu, J. Y.; Long, Y. Z.; Fan, Z. Y. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun. 2013, 5, 4007.

35

Panigrahi, S.; Basak, D. Core-shell TiO2@ZnO nanorods for efficient ultraviolet photodetection. Nanoscale 2011, 3, 2336-2341.

36

Hu, L. F.; Yan, J.; Liao, M. Y.; Wu, L. M.; Fang, X. S. Ultrahigh external quantum efficiency from thin SnO2 nanowire ultraviolet photodetectors. Small 2011, 7, 1012- 1017.

37

Lu, M. L.; Weng, T. M.; Chen, J. Y.; Chen, Y. F. Ultrahigh- gain single SnO2 nanowire photodetectors made with ferromagnetic nickel electrodes. NPG Asia Mater. 2012, 4, e26.

38

Lu, M. L.; Lin, T. Y.; Weng, T. M.; Chen, Y. F. Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles. Opt. Express 2011, 19, 16266-16272.

39

Lin, C. H.; Chen, T. T; Chen, Y. F. Photocurrent enhancement of SnO2 nanowires through Au-nanoparticles decoration. Opt. Express 2008, 16, 16916-16922.

40

Kim, D.; Shin, G.; Yoon, J.; Jang, D.; Lee, S. -J.; Zi, G.; Ha, J. S. High performance stretchable UV sensor arrays of SnO2 nanowires. Nanotechnology 2013, 24, 315502.

41

Huang, S.; Wu, H.; Matsubara, K.; Cheng, J.; Pan, W. Facile assembly of n-SnO2 nanobelts-p-NiO heterojunctions with enhanced ultraviolet photoresponse. Chem. Commun. 2014, 50, 2847-2850.

42

Hsu, C. L.; Lu, Y. C. Fabrication of a transparent ultraviolet detector by using n-type Ga2O3 and p-type Ga-doped SnO2 core-shell nanowires. Nanoscale 2012, 4, 5710-5717.

43

Li, X. D.; Gao, C. T.; Duan, H. G.; Lu, B. A.; Wang, Y. Q.; Chen, L. L.; Zhang, Z. X.; Pan, X. J.; Xie, E. Q. High- performance photoelectrochemical-type self-powered UV photodetector using epitaxial TiO2/SnO2 branched heterojunction nanostructure. Small 2013, 9, 2005-2011.

44

Li, L.; Auer, E.; Liao, M. Y.; Fang, X. S.; Zhai, T. Y.; Gautam, U. K.; Lugstein, A.; Koide, Y.; Bando, Y.; Golberg, D. Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale 2011, 3, 1120-1126.

45

Li, Y. B.; Tokizono, T.; Liao, M. Y.; Zhong, M.; Koide, Y.; Yamada, I.; Delaunay, J. -J. Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv. Funct. Mater. 2010, 20, 3972-3978.

46

Zou, R. J.; Zhang, Z. Y.; Liu, Q.; Hu, J. Q.; Sang, L. W.; Liao, M. Y.; Zhang, W. J. High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (100) facet-oriented β-Ga2O3 nanobelts. Small 2014, 10, 1848-1856.

47

Tian, W.; Zhi, C. Y.; Zhai, T. Y.; Chen, S. M.; Wang, X.; Liao, M. Y.; Golberg, D.; Bando, Y. In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. J. Mater. Chem. 2012, 22, 17984-17991.

48

Zou, R. J.; Zhang, Z. Y.; Hu, J. Q.; Sang, L. W.; Koide, Y.; Liao, M. Y. High-detectivity nanowire photodetectors governed by bulk photocurrent dynamics with thermally stable carbide contacts. Nanotechnology 2013, 24, 495701.

49

Feng, P.; Zhang, J. Y.; Li, Q. H.; Wang, T. H. Individual β-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett. 2006, 88, 153107.

50

Fang, X. S.; Hu, L. F.; Huo, K. F.; Gao, B.; Zhao, L. J.; Liao, M. Y.; Chu, P. K.; Bando, Y.; Golberg, D. New ultraviolet photodetector based on individual Nb2O5 nanobelts. Adv. Funct. Mater. 2011, 21, 3907-3915.

51

Tamang, R.; Varghese, B.; Mhaisalkar, S. G.; Tok, E. S.; Sow, C. H. Probing the photoresponse of individual Nb2O5 nanowires with global and localized laser beam irradiation. Nanotechnology 2011, 22, 115202.

52

Li, L.; Zhang, Y.; Fang, X. S.; Zhai, T. Y.; Liao, M. Y.; Sun, X. L.; Koide, Y.; Bando, Y.; Golberg, D. WO3 nanowires on carbon papers: Electronic transport, improved ultraviolet- light photodetectors and excellent field emitters. J. Mater. Chem. 2011, 21, 6525-6530.

53

Huang, K.; Zhang, Q.; Yang, F.; He, D. Y. Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 2010, 3, 281-287.

54

Chen, R. S.; Chen, C. A.; Tsai, H. Y.; Wang, W. C.; Huang, Y. S. Photoconduction properties in single-crystalline titanium dioxide nanorods with ultrahigh normalized gain. J. Phys. Chem. C 2012, 116, 4267-4272.

55

Xie, Y. R.; Wei, L.; Wei, G. D.; Li, Q. H.; Wang, D.; Chen, Y. X.; Yan, S. S.; Liu, G. L.; Mei, L. M.; Jiao, J. A self- powered UV photodetector based on TiO2 nanorod arrays. Nano. Res. Lett. 2013, 8, 188.

56

Zhang, Y. J.; Wang, J. J.; Zhu, H. F.; Li, H.; Jiang, L.; Shu, C. Y.; Hu, W. P.; Wang, C. R. High performance ultraviolet photodetectors based on an individual Zn2SnO4 single crystalline nanowire. J. Mater. Chem. 2010, 20, 9858-9860.

57

Li, C.; Bando, Y.; Liao, M. Y.; Koide, Y.; Golberg, D. Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4 nanowire. Appl. Phys. Lett. 2010, 97, 161102.

58

Li, L.; Lee, P. S.; Yan, C. Y.; Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Koide, Y.; Bando, Y.; Golberg, D. Ultrahigh- performance solar-blind photodetectors based on individual single-crystalline In2Ge2O7 nanobelts. Adv. Mater. 2010, 22, 5145-5149.

59

Tian, W.; Zhi, C. Y.; Zhai, T. Y.; Wang, X.; Liao, M. Y.; Li, S. L.; Chen, S. M.; Golberg, D.; Bando, Y. Ultrahigh quantum efficiency of CuO nanoparticle decorated In2Ge2O7 nanobelt deep-ultraviolet photodetectors. Nanoscale 2012, 4, 6318-6324.

60

Liu, Z.; Huang, H. T.; Liang, B.; Wang, X. F.; Wang, Z. R.; Chen, D.; Shen, G. Z. Zn2GeO4 and In2Ge2O7 nanowire mats based ultraviolet photodetectors on rigid and flexible substrates. Opt. Express 2012, 20, 2982-2991.

61

Yan, C. Y.; Singh, N.; Lee, P. S. Morphology control of indium germanate nanowires, nanoribbons, and hierarchical nanostructures. Cryst. Growth Des. 2009, 9, 3697-3701.

62

Yan, C. Y.; Singh, N.; Lee, P. S. Wide-bandgap Zn2GeO4 nanowire networks as efficient ultraviolet photodetectors with fast response and recovery time. Appl. Phys. Lett. 2010, 96, 053108.

63

Liu, Z.; Liang, B.; Chen, G.; Yu, G.; Xie, Z.; Gao, L. N.; Chen, D.; Shen, G. Z. Contact printing of horizontally aligned Zn2GeO4 and In2Ge2O7 nanowire arrays for multi-channel field-effect transistors and their photoresponse performances. J. Mater. Chem. C 2013, 1, 131-137.

64

Liu, H.; Zhang, Z. M.; Hu, L. F.; Gao, N.; Sang, L. W.; Liao, M. Y.; Ma, R. Z.; Xu, F. F.; Fang, X. S. New UV-A photodetector based on individual potassium niobate nanowires with high performance. Adv. Opt. Mater. 2014, 2, 771-778.

65

Wang, Z. L. Splendid one-dimensional nanostructures of zinc oxide: A new nanomaterial family for nanotechnology. ACS Nano 2008, 2, 1987-1992.

66

Zhai, T. Y.; Fang, X. S.; Liao, M. Y.; Xu, X. J.; Zeng, H. B.; Bando; Y.; Golberg, D. A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 2009, 9, 6504-6529.

67

Jiang, R. B.; Li, B. X.; Fang, C. H.; Wang, J. F. Metal/semiconductor hybrid nanostructures for plasmon- enhanced applications. Adv. Mater. 2014, 26, 5274-5309.

68

Wang, Z. L. Progress in piezotronics and piezo-phototronics. Adv. Mater. 2012, 24, 4632-4646.

69

Liu, Y.; Yang, Q.; Zhang, Y.; Yang, Z. Y.; Wang, Z. L. Nanowire piezo-phototronic photodetector: Theory and experimental design. Adv. Mater. 2012, 24, 1410-1417.

70

Wang, Z. R.; Wang, H.; Liu, B.; Qiu, W. Z.; Zhang, J.; Ran, S. H.; Huang, H. T.; Xu, J.; Han, H. W.; Chen, D.; Shen, G. Z. Transferable and flexible nanorod-assembled TiO2 cloths for dye-sensitized solar cells, photodetectors, and photocatalysts. ACS Nano. 2011, 5, 8412-8419.

71

Wang, X. F.; Song, W. F.; Liu, B.; Chen, G.; Chen, D.; Zhou, C. W.; Shen, G. Z. High-performance organic-inorganic hybrid photodetectors based on P3HT: CdSe nanowires heterojunctions on rigid and flexible substrates. Adv. Funct. Mater. 2013, 23, 1202-1209.

72

Amos, F. F.; Morin, S. A.; Streifer, J. A.; Hamers, R. J.; Jin, S. Photodetector arrays directly assembled onto polymer substrates from aqueous solution. J. Am. Chem. Soc. 2007, 129, 14296-14302.

73

Aksoy, B.; Coskun, S.; Kucukyildiz, S.; Unalan, H. E. Transparent, highly flexible, all nanowire network germanium photodetectors. Nanotechnology 2012, 23, 325202.

74

Hu, P. A.; Wang, L. F.; Yoon, M.; Zhang, J.; Feng, W.; Wang, X. N.; Wen, Z. Z.; Idrobo, J. C.; Miyamoto, Y.; Geohegan, D. B.; et al. Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett. 2013, 13, 1649-1654.

75

Sysoev, V. V.; Schneider, T.; Goschnick, J.; Kiselev, I.; Habicht, W.; Hahn, H.; Strelcov, E.; Kolmakov, A. Percolating SnO2 nanowire network as a stable gas sensor: Direct comparison of long-term performance versus SnO2 nanoparticle films. Sens. Actuators, B 2009, 139, 699-703.

76

Han, Y. T.; Wu, X.; Ma, Y. L.; Gong, L. H.; Qu, F. Y.; Fan, H. J. Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm 2011, 13, 3506-3510.

77

Wan, Q.; Dattoli, E. N.; Lu W. Transparent metallic Sb-doped SnO2 nanowires. Appl. Phys. Lett. 2007, 90, 222107.

78

Wu, Y. L.; Chang, S. J.; Liu, C. H.; Weng, W. Y.; Tsai, T. Y.; Hsu, C. L. UV enhanced field emission for β-Ga2O3 nanowires. IEEE Electron Dev. Lett. 2013, 34, 701-703.

79

Mazeina, L.; Perkins, F. K.; Bermudez, V. M.; Arnold, S. P.; Prokes, S. M. Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors. Langmuir 2010, 26, 13722-13726.

80

Luo H. L.; Song, W. J.; Hoertz, P. G.; Hanson, K.; Ghosh, R.; Rangan, S.; Brennaman, M. K.; Concepcion, J. J.; Binstead, R. A.; Bartynski, R. A.; et al. A sensitized Nb2O5 photoanode for hydrogen production in a dye-sensitized photoelectronsynthesis cell. Chem. Mater. 2013, 25, 122- 131.

81

Ou, J. Z.; Rani, R. A.; Ham, M. H.; Field, M. R.; Zhang, Y.; Zheng, H. D.; Reece, P.; Zhuiykov, S.; Sriram, S.; Bhaskaran, M.; et al. Elevated temperature anodized Nb2O5: A photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 2012, 6, 4045-4053.

82

Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203-208.

83

Huang, R.; Zhu, J.; Yu, R. Synthesis and electrical characterization of tungsten oxide nanowires. Chin. Phys. B 2009, 18, 3024-3030.

84

Hong, K. Q.; Xie, M. H.; Wu, H. S. Tungsten oxide nanowires synthesized by a catalyst-free method at low temperature. Nanotechnology 2006, 17, 4830-4833.

85

Mukherjee, N.; Paulose, M.; Varghese, O. K.; Mor, G. K.; Grimes, C. A. Fabrication of nanoporous tungsten oxide by galvanostatic anodization. J. Mater. Res. 2003, 18, 2296-2299.

86

Gu, Z. J.; Ma, Y.; Yang, W. S.; Zhang, G. J.; Yao, J. N. Self-assembly of highly oriented one-dimensional h-WO3 nanostructures. Chem. Commun. 2005, 41, 3597-3599.

87

Zhang, X. W.; Zhang, T.; Ng, J. W.; Sun, D. D. High- performance multifunctional TiO2 nanowire ultrafiltration membrane with a hierarchical layer structure for water treatment. Adv. Funct. Mater. 2009, 19, 3731-3736.

88

Park, J. H.; Lee, T. W.; Kang, M. G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: Use in dye-sensitized solar cells. Chem. Commun. 2008, 44, 2867-2869.

89

Albu, S. P.; Ghicov, A.; Macak, J. M.; Hahn, R. Self- organized, free-standing TiO2 nanotube membrane for flow-through photocatalytic applications. Nano Lett. 2007, 7, 1286-1289.

90

Tsai, T. Y.; Chang, S. J.; Weng, W. Y.; Hsu, C. L.; Wang, S. H.; Chiu, C. J.; Hsueh, T. J.; Chang, S. P. A visible-blind TiO2 nanowire photodetector. J. Electrochem. Soc. 2012, 159, J132-J135.

91

Mao, Y. B.; Park, T, J.; Wong, S. S. Synthesis of classes of ternary metal oxide nanostructures. Chem. Commun. 2005, 41, 5721-5735.

92

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885-889.

93

Bie, Y. Q.; Liao, Z. M.; Zhang, H. Z.; Li, G. R.; Ye, Y.; Zhou, Y. B.; Xu, J.; Qin, Z. X.; Dai, L.; Yu, D. P. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater. 2011, 23, 649-653.

94

Tsai, T. Y.; Chang, S. J.; Hsueh, T. J.; Hsueh, H. T.; Weng, W. Y.; Hsu, C. L.; Dai, B. T. p-Cu2O-shell/n-TiO2-nanowire-core heterostucture photodiodes. Nanoscale Res. Lett. 2011, 6, 575.

95

Zou, J. P.; Zhang, Q.; Huang, K.; Marzari, N. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J. Phys. Chem. C 2010, 114, 10725-10729.

96

Liu, B. D.; Bando, Y.; Liu, L. Z.; Zhao, J. J.; Masanori, M.; Jiang, X.; Golberg, D. Solid-solution semiconductor nanowires in pseudobinary systems. Nano Lett. 2013, 13, 85-90.

97

Li, L.; Lu, H.; Yang, Z. Y.; Tong, L. M.; Bando, Y.; Golberg, D. Bandgap-graded CdSxSe1-x nanowires for high- performance field-effect transistors and solar cells. Adv. Mater. 2013, 25, 1109-1113.

98

Pan, A. L.; Liu, R. B.; Sun, M. H.; Ning, C. Z. Spatial composition grading of quaternary ZnCdSSe alloy nanowires with tunable light emission between 350 and 710 nm on a single substrate. ACS Nano 2010, 4, 671-680.

Publication history
Copyright
Acknowledgements

Publication history

Received: 13 September 2014
Revised: 22 November 2014
Accepted: 30 November 2014
Published: 21 January 2015
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We acknowledge the support from the National Natural Science Foundation of China (Nos. 51422206 and 51372159), 1, 000 Young Talents Plan, Jiangsu Shuangchuang Plan, Distinguished Young Scholars Supported by Jiangsu Science and Technology Committee (No. BK20140009), and funding from the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

Return