Journal Home > Volume 8 , Issue 5

This review outlines the developments and recent progress in metal-assisted chemical etching of silicon, summarizing a variety of fundamental and innovative processes and etching methods that form a wide range of nanoscale silicon structures. The use of silicon as an anode for Li-ion batteries is also reviewed, where factors such as film thickness, doping, alloying, and their response to reversible lithiation processes are summarized and discussed with respect to battery cell performance. Recent advances in improving the performance of silicon-based anodes in Li-ion batteries are also discussed. The use of a variety of nanostructured silicon structures formed by many different methods as Li-ion battery anodes is outlined, focusing in particular on the influence of mass loading, core-shell structure, conductive additives, and other parameters. The influence of porosity, dopant type, and doping level on the electrochemical response and cell performance of the silicon anodes are detailed based on recent findings. Perspectives on the future of silicon and related materials, and their compositional and structural modifications for energy storage via several electrochemical mechanisms, are also provided.


menu
Abstract
Full text
Outline
About this article

Metal-assisted chemical etching of silicon and the behavior of nanoscale silicon materials as Li-ion battery anodes

Show Author's information William McSweeney1,2,3,4Hugh Geaney1,4Colm O'Dwyer1,4( )
Department of ChemistryUniversity College CorkCorkIreland
Department of Physics and EnergyUniversity of LimerickLimerickIreland
Materials and Surface Science InstituteUniversity of LimerickLimerickIreland
Micro & Nanoelectronics CentreTyndall National Institute, Lee MaltingsCorkIreland

Abstract

This review outlines the developments and recent progress in metal-assisted chemical etching of silicon, summarizing a variety of fundamental and innovative processes and etching methods that form a wide range of nanoscale silicon structures. The use of silicon as an anode for Li-ion batteries is also reviewed, where factors such as film thickness, doping, alloying, and their response to reversible lithiation processes are summarized and discussed with respect to battery cell performance. Recent advances in improving the performance of silicon-based anodes in Li-ion batteries are also discussed. The use of a variety of nanostructured silicon structures formed by many different methods as Li-ion battery anodes is outlined, focusing in particular on the influence of mass loading, core-shell structure, conductive additives, and other parameters. The influence of porosity, dopant type, and doping level on the electrochemical response and cell performance of the silicon anodes are detailed based on recent findings. Perspectives on the future of silicon and related materials, and their compositional and structural modifications for energy storage via several electrochemical mechanisms, are also provided.

Keywords: energy storage, silicon, nanostructures, nanowires, electrochemistry, Li-ion battery, etching

References(273)

1

Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430.

2

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

3

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

4

McDowell, M. T.; Lee, S. W.; Nix, W. D.; Cui, Y. 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 2013, 25, 4966–4985.

5

Lee, C. L.; Tsujino, K.; Kanda, Y.; Ikeda, S.; Matsumura, M. Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts. J. Mater. Chem. 2008, 18, 1015–1020.

6

Wei, J.; Buriak, J. M.; Siuzdak, G. Desorption/ionization mass spectrometry on porous silicon. Nature 1999, 399, 243–246.

7

Lehmann, V.; Foll, H. Formation mechanism and properties of electrochemically etched trenches in n-type silicon. J. Electrochem. Soc. 1990, 137, 653–659.

8

Canham, L. T. Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl. Phys. Lett. 1990, 57, 1046–1048.

9

Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. D. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009, 9, 3550–3554.

10

Chazalviel, J. N. Porous Silicon Science and Technology; Springer: Berlin, 1995.

11

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35.

12

Tsirlina, T.; Cohen, S.; Cohen, H.; Sapir, L.; Peisach, M.; Tenne, R.; Matthaeus, A.; Tiefenbacher, S.; Jaegermann, W.; Ponomarev, E. A. et al. Growth of crystalline WSe2 and WS2 films on amorphous substrate by reactive (van der Waals) rheotaxy. Sol. Energ. Mat. Sol. C. 1996, 44, 457–470.

13

Stewart, M. P.; Buriak, J. M. Chemical and biological applications of porous silicon technology. Adv. Mater. 2000, 12, 859–869.

DOI
14

Holmes, J. D.; Johnston, K. P.; Doty, R. C.; Korgel, B. A. Control of thickness and orientation of solution-grown silicon nanowires. Science 2000, 287, 1471–1473.

15

Cui, Y.; Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851–853.

16

Smith, R. L.; Collins, S. D. Porous silicon formation mechanisms. J. Appl. Phys. 1992, 71, R1–R22.

17

Lehman, V. Electrochemistry of Silicon; Wiley-VCH: Weinheim, Germany, 2002.

18

Kolasinski, K. W. Silicon nanostructures from electroless electrochemical etching. Curr. Opin. Solid State Mater. Sci. 2005, 9, 73–83.

19

Beale, M. I. J.; Benjamin, J. D.; Uren, M. J.; Chew, N. G.; Cullis, A. G. An experimental and theoretical study of the formation and microstructure of porous silicon. J. Cryst. Growth 1985, 73, 622–636.

20

Uhlir, A. Electrolytic shaping of germanium and silicon. Bell Syst. Tech. J. 1956, 35, 333–347.

21

Quiroga-González, E.; Carstensen, J.; Glynn, C.; O'Dwyer, C.; Föll, H. Pore size modulation in electrochemically etched macroporous p-type silicon monitored by FFT impedance spectroscopy and Raman scattering. Phys. Chem. Chem. Phys. 2014, 16, 255–263.

22

Cullis, A. G.; Canham, L. T. Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 1991, 353, 335–338.

23

Canham, L. Properties of Porous Silicon. Institution of Electrical Engineers, 1997.

24

O'Dwyer, C.; Buckley, D. N.; Sutton, D.; Newcomb, S. B. Anodic formation and characterization of nanoporous InP in aqueous KOH electrolytes. J. Electrochem. Soc. 2006, 153, G1039–G1046.

25

O'Dwyer, C.; Buckley, D. N; Sutton, D.; Serantoni, M.; Newcomb, S. B. An investigation by AFM and TEM of the mechanism of anodic formation of nanoporosity in n-InP in KOH. J. Electrochem. Soc. 2007, 154, H78–H85.

26

Tiginyanu, I.; Ursaki, V.; Monaico, E.; Foca, E.; Föll, H. Pore etching in Ⅲ–V and Ⅱ–VI semiconductor compounds in neutral electrolyte. Electrochem. Solid ST. 2007, 10, D127–D129.

27

O'Dwyer, C.; Buckley, D. N.; Newcomb, S. B. Simultaneous observation of current oscillations and porous film growth during anodization of InP. Langmuir 2005, 21, 8090–8095.

28

Lynch, R.; O'Dwyer, C.; Sutton, D.; Newcomb, S. B.; Buckley, D. N. Nanoporous domains in n-InP anodized in KOH. ECS Trans. 2007, 6, 355–366.

29

Lynch, R.; O'Dwyer, C.; Quill, N.; Nakahara, S.; Newcomb, S. B.; Buckley, D. N. Pore propagation directions and nanoporous domain shape in n-InP anodized in KOH. J. Electrochem. Soc. 2013, 160, D260–D270.

30

Lynch, R. P.; Quill, N.; O'Dwyer, C.; Nakahara, S.; Buckley, D. N. Propagation of nanopores during anodic etching of n-InP in KOH. Phys. Chem. Chem. Phys. 2013, 15, 15135–15145.

31

Sun, D.; Riley, A. E.; Cadby, A. J.; Richman, E. K.; Korlann, S. D.; Tolbert, S. H. Hexagonal nanoporous germanium through surfactantdriven self-assembly of Zintl clusters. Nature 2006, 441, 1126–1130.

32

Armatas, G. S.; Kanatzidis, M. G. Hexagonal mesoporous germanium. Science 2006, 313, 817–820.

33

Mohanan, J. L.; Arachchige, I. U.; Brock, S. L. Porous semiconductor chalcogenide aerogels. Science 2005, 307, 397–400.

34

Bag, S.; Trikalitis, P. N.; Chupas, P. J.; Armatas, G. S.; Kanatzidis, M. G. Porous semiconducting gels and aerogels from chalcogenide clusters. Science 2007, 317, 490–493.

35

Kato, S.; Kurokawa, Y.; Watanabe, Y.; Yamada, Y.; Yamada, A.; Ohta, Y.; Niwa, Y.; Hirota, M. Optical assessment of silicon nanowire arrays fabricated by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 1–6.

36

Wen, X. M.; Van Dao, L.; Hannaford, P. Temperature dependence of photoluminescence in silicon quantum dots. J. Phys. D: Appl. Phys. 2007, 40, 3573–3578.

37

Li, X. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Curr. Opin. Solid ST. M. 2012, 16, 71–81.

38

Li, X. P.; Xiao, Y. J.; Bang, J. H.; Lausch, D.; Meyer, S.; Miclea, P. T.; Jung, J. Y.; Schweizer, S. L.; Lee, J. H.; Wehrspohn, R. B. Upgraded silicon nanowires by metal-assisted etching of metallurgical silicon: A new route to nanostructured solar-grade silicon. Adv. Mater. 2013, 25, 3187–3191.

39

Lin, V. S. Y.; Motesharei, K.; Dancil, K. P. S.; Sailor, M. J.; Ghadiri, M. R. A porous silicon-based optical interferometric biosensor. Science 1997, 278, 840–843.

40

Hochbaum, A. I.; Fan, R.; He, R. R.; Yang, P. D. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.

41

Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J. Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003, 299, 2045–2047.

42

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163.

43

Ghossoub, M.; Valavala, K.; Seong, M.; Azeredo, B.; Hsu, K.; Sadhu, J.; Singh, P.; Sinha, S. Spectral phonon scattering from sub-10 nm surface roughness wavelengths in metal-assisted chemically etched Si nanowires. Nano Lett. 2013, 13, 1564–1571.

44

Feser, J. P.; Sadhu, J. S.; Azeredo, B. P.; Hsu, K. H.; Ma, J.; Kim, J.; Seong, M.; Fang, N. X.; Li, X. L.; Ferreira, P. M. Thermal conductivity of silicon nanowire arrays with controlled roughness. J. Appl. Phys. 2012, 112, 114306.

45

Lim, J. W.; Hippalgaonkar, K.; Andrews, S. C.; Majumdar, A.; Yang, P. D. Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett. 2012, 12, 2475–2482.

46

Oskam, G.; Long, J. G.; Natarajan, A.; Searson, P. C. Electrochemical deposition of metals onto silicon. J. Phys. D: Appl. Phys. 1998, 31, 1927–1949.

47

Dawood, M. K.; Tripathy, S.; Dolmanan, S. B.; Ng, T. H.; Tan, H.; Lam, J. Influence of catalytic gold and silver metal nanoparticles on structural, optical, and vibrational properties of silicon nanowires synthesized by metal-assisted chemical etching. J. Appl. Phys. 2012, 112, 073509.

48

Chattopadhyay, S.; Li, X. L.; Bohn, P. W. In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching. J. Appl. Phys. 2002, 91, 6134–6140.

49

Kato, Y.; Adachi, S. Synthesis of Si nanowire arrays in AgO/HF solution and their optical and wettability properties. J. Electrochem. Soc. 2011, 158, K157–K163.

50

Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2009, 110, 527–546.

51

Peng, K. Q.; Yan, Y. J.; Gao, S. P.; Zhu, J. Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry. Adv. Mater. 2002, 14, 1164–1167.

DOI
52

Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394.

53

Huang, Z. P.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U. Metal-assisted chemical etching of silicon: A review. Adv. Mater. 2011, 23, 285–308.

54

Li, X. Metal assisted chemical etching for high aspect ratio nanostructures: A review of characteristics and applications in photovoltaics. Curr. Opin. Solid. St. M. 2012, 16, 71–81.

55

Hochbaum, A. I.; Chen, R. K.; Delgado, R. D.; Liang, W. J.; Garnett, E. C.; Najarian, M.; Majumdar, A.; Yang, P. D. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008, 451, 163–167.

56

Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450.

57

Li, J.; Yue, C.; Yu, Y.; Chui, Y. S.; Yin, J.; Wu, Z.; Wang, C.; Zang, Y.; Lin, W.; Li, J. et al. Si/Ge core–shell nanoarrays as the anode material for 3D lithium ion batteries. J. Mater. Chem. A 2013, 1, 14344–14349.

58

Li, X.; Bohn, P. W. Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl. Phys. Lett. 2000, 77, 2572–2574.

59

Peng, K. Q.; Fang, H.; Hu, J. J.; Wu, Y.; Zhu, J.; Yan, Y. J.; Lee, S. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem. Eur. J. 2006, 12, 7942–7947.

60

Peng, K.; Wu, Y.; Fang, H.; Zhong, X.; Xu Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Int. Edit. 2005, 44, 2737–2742.

61

Teerlinck, I.; Mertens, P. W.; Schmidt, H. F.; Meuris, M.; Heyns, M. M. Impact of the electrochemical properties of silicon wafer surfaces on copper outplating from HF solutions. J. Electrochem. Soc. 1996, 143, 3323–3327.

62

Gorostiza, P.; Díaz, R.; Servat, J.; Sanz, F.; Morante, J. R. Atomic force microscopy study of the silicon doping influence on the first stages of platinum electroless deposition. J. Electrochem. Soc. 1997, 144, 909–914.

63

Tang, H.; Tu, J.; Liu, X.; Zhang, Y.; Huang, S.; Li, W.; Wang, X.; Gu, C. Self-assembly of Si/honeycomb reduced graphene oxide composite film as a binder-free and flexible anode for Li-ion batteries. J. Mater. Chem. A 2014, 2, 5834–5840.

64

Li, Z. C.; Zhao, L.; Diao, H. W.; Zhou, C. L.; Li, H. L.; Wang, W. J. Macroporous silicon formation on low-resistivity p-type c-Si substrate by metal-catalyzed electrochemical etching. Int. J. Electrochem. Sci. 2013, 8, 1163–1169.

65

Kolasinski, K. W. Etching of silicon in fluoride solutions. Surf. Sci. 2009, 603, 1904–1911.

66

Peng, K. Q.; Hu, J. J.; Yan, Y. J.; Wu, Y.; Fang, H.; Xu, Y.; Lee, S. T.; Zhu, J. Fabrication of single-crystalline silicon nanowires by scratching a silicon surface with catalytic metal particles. Adv. Funct. Mater. 2006, 16, 387–394.

67

Trucks, G. W.; Raghavachari, K.; Higashi, G. S.; Chabal, Y. J. Mechanism of HF etching of silicon surfaces: A theoretical understanding of hydrogen passivation. Phys. Rev. Lett. 1990, 65, 504–507.

68

Uhlir Jr, A. Electrolytic shaping of germanium and silicon. Bell System Tech. J. 1956, 35, 333–347.

69

Wagner, R. S.; Ellis, W. C. Vapor–liquid–solid mechanism of single crystal growth. Appl. Phys. Lett. 1964, 4, 89.

70

Morales, A. M.; Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279, 208–211.

71

Chan, C. K.; Peng, H. L.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 2008, 3, 31–35.

72

Ruffo, R.; Hong, S. S.; Chan, C. K.; Huggins, R. A.; Cui, Y. Impedance analysis of silicon nanowire lithium ion battery anodes. J. Phys. Chem. C 2009, 113, 11390–11398.

73

Wang, Y.; Lew, K. K.; Ho, T. T.; Pan, L.; Novak, S. W.; Dickey, E. C.; Redwing J. M.; Mayer, T. S. Use of phosphine as an n-type dopant source for vapor–liquid–solid growth of silicon nanowires. Nano Lett. 2005, 5, 2139–2143.

74

Schmidt, V.; Senz, S.; Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005, 5, 931–935.

75

Choi, W. K.; Liew, T. H.; Dawood, M. K.; Smith, H. I.; Thompson, C. V.; Hong, M. H. Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. Nano Lett. 2008, 8, 3799–3802.

76

de Boor, J.; Geyer, N.; Wittemann, J. V.; Gösele, U.; Schmidt, V. Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching. Nanotechnology 2010, 21, 095302.

77

Wang, N.; Tang, Y. H.; Zhang, Y. F.; Lee, C. S.; Lee, S. T. Nucleation and growth of Si nanowires from silicon oxide. Phys. Rev. B 1998, 58, R16024–R16026.

78

Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Silicon nanowires for rechargeable lithium-ion battery anodes. Appl. Phys. Lett. 2008, 93, 033105.

79

Azeredo, B. P.; Sadhu, J.; Ma, J.; Jacobs, K.; Kim, J.; Lee, K.; Eraker, J. H.; Li, X.; Sinha S.; Fang, N. et al. Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching. Nanotechnology 2013, 24, 225305.

80

Peng, K.; Lu, A.; Zhang, R.; Lee, S. T. Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv. Funct. Mater. 2008, 18, 3026–3035.

81

Zhang, M. L.; Peng, K. Q.; Fan, X.; Jie, J. S.; Zhang, R. Q.; Lee, S. T.; Wong, N. B. Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching. J. Phys. Chem. C 2008, 112, 4444–4450.

82

Peng, K. Q.; Fang, H.; Hu, J. J.; Wu, Y.; Zhu, J.; Yan, Y. J.; Lee, S. Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. Chem. Eur. J. 2006, 12, 7942–7947.

83

Lotty, O.; Petkov, N.; Georgiev, Y. M.; Holmes, J. D. Porous to nonporous transition in the morphology of metal assisted etched silicon nanowires. Jpn. J. Appl. Phys. 2012, 51, 11PE03-1.

84

McSweeney, W.; Lotty, O.; Mogili, N. V. V.; Glynn, C.; Geaney, H.; Tanner, D.; Holmes, J. D.; O'Dwyer, C. Doping controlled roughness and defined mesoporosity in chemically etched silicon nanowires with tunable conductivity. J. Appl. Phys. 2013, 114, 034309.

85

Hochbaum, A. I.; Gargas, D.; Hwang, Y. J.; Yang, P. D. Single crystalline mesoporous silicon nanowires. Nano Lett. 2009, 9, 3550–3554.

86

Liu, G. L.; Young, K. L.; Liao, X.; Personick, M. L.; Mirkin, C. A. Anisotropic nanoparticles as shape-directing catalysts for the chemical etching of silicon. J. Am. Chem. Soc. 2013, 135, 12196–12199.

87

Geyer, N.; Fuhrmann, B.; Huang, Z. P.; de Boor, J.; Leipner, H. S.; Werner, P. Model for the mass transport during metal-assisted chemical etching with contiguous metal films as catalysts. J. Phys. Chem. C 2012, 116, 13446.

88

Güder, F.; Yang, Y.; Küçükbayrak, U. M.; Zacharias, M. Tracing the migration history of metal catalysts in metal-assisted chemically etched silicon. ACS Nano 2013, 7, 1583–1590.

89

Bang, B. M.; Kim, H.; Song, H. K.; Cho, J.; Park, S. Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching. Energ. Environ. Sci. 2011, 4, 5013–5019.

90

Chiappini, C.; Liu, X. W.; Fakhoury, J. R.; Ferrari, M. Biodegradable porous silicon barcode nanowires with defined geometry. Adv Funct. Mater. 2010, 20, 2231–2239.

91

Chern, W.; Hsu, K.; Chun, I. S.; de Azeredo, B. P.; Ahmed, N.; Kim, K. H.; Zuo, J. M.; Fang, N.; Ferreira, P.; Li, X. L. Nonlithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays. Nano Lett. 2010, 10, 1582–1588.

92

Zhong, X.; Qu, Y. Q.; Lin, Y. C.; Liao, L.; Duan, X. F. Unveiling the formation pathway of single crystalline porous silicon nanowires. ACS Appl. Mater. Inter. 2011, 3, 261–270.

93

Qu, Y. Q.; Liao, L.; Li, Y. J.; Zhang, H.; Huang, Y.; Duan, X. F. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 2009, 9, 4539–4543.

94

Guo, J.; Sun, A.; Chen, X.; Wang, C.; Manivannan, A. Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 2011, 56, 3981–3987.

95

Lee, D. H.; Kim, Y.; Doerk, G. S.; Laboriante, I.; Maboudian, R. Strategies for controlling Si nanowire formation during Au-assisted electroless etching. J. Mater. Chem. 2011, 21, 10359–10363.

96

Chartier, C.; Bastide, S.; Lévy-Clément, C. Metal-assisted chemical etching of silicon in HF–H2O2. Electrochim. Acta 2008, 53, 5509–5516.

97

Li, S.; Ma, W.; Zhou, Y.; Chen, X.; Xiao, Y.; Ma, M.; Zhu W.; Wei, F. Fabrication of porous silicon nanowires by MACE method in HF/H2O2/AgNO3 system at room temperature. Nanoscale Res. Lett. 2014, 9, 196.

98

Balasundaram, K.; Sadhu, J. S.; Shin, J. C.; Azeredo, B.; Chanda, D.; Malik, M.; Hsu, K.; Rogers, J. A.; Ferreira, P.; Sinha, S. et al. Porosity control in metal assisted chemical etching of degenerately doped silicon. Nanotechnology 2012, 23, 305304.

99

Liu, R.; Zhang, F.; Con, C.; Cui, B.; Sun, B. Lithography-free fabrication of silicon nanowire and nanohole arrays by metal-assisted chemical etching. Nanoscale Res. Lett. 2013, 8, 1–8.

100

Choi, H. J.; Baek, S.; Jang, H. S.; Kim, S. B.; Oh, B. Y.; Kim, J. H. Optimization of metal-assisted chemical etching process in fabrication of p-type silicon wire arrays. Curr. Appl. Phys. 2011, 11, S25–S29.

101

Lu, Y. T.; Barron, A. R. Nanopore-type black silicon anti-reflection layers fabricated by a one-step silver-assisted chemical etching. Phys. Chem. Chem. Phys. 2013, 15, 9862–9870.

102

Smith, Z. R.; Smith, R. L.; Collins, S. D. Mechanism of nanowire formation in metal assisted chemical etching. Electrochim. Acta 2013, 92, 139–147.

103

Qi, Y.; Wang, Z.; Zhang, M.; Yang, F.; Wang, X. A processing window for fabricating heavily doped silicon nanowires by metal-assisted chemical etching. J. Phys. Chem. C 2013, 117, 25090–25096.

104

Huang, Z. P.; Shimizu, T.; Senz, S.; Zhang, Z.; Geyer, N.; Gösele, U. Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon. J. Phys. Chem. C 2010, 114, 10683–10690.

105

Zuo, Z.; Cui, G.; Shi, Y.; Liu Y.; Ji, G Gold-thickness-dependent Schottky barrier height for charge transfer in metal-assisted chemical etching of silicon. Nanoscale Res. Lett. 2013, 8, 193.

106

Ge, S.; Jiang, K.; Lu, X.; Chen, Y.; Wang, R.; Fan, S. Orientation-controlled growth of single-crystal silicon-nanowire arrays. Adv. Mater. 2005, 17, 56–61.

107

He, R.; Gao, D.; Fan, R.; Hochbaum, A. I.; Carraro, C.; Maboudian, R.; Yang, P. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 2005, 17, 2098–2102.

108

Hochbaum, A. I.; Fan, R.; He, R.; Yang, P. Controlled growth of Si nanowire arrays for device integration. Nano Lett. 2005, 5, 457–460.

109

Li, X. L.; Gu, M.; Hu, S. Y.; Kennard, R.; Yan, P. F.; Chen, X. L.; Wang, C. M.; Sailor, M. J.; Zhang, J. G.; Liu, J. Mesoporous silicon sponge as an anti-pulverization structure for high-performance lithium-ion battery anodes. Nature Commun. 2014, 5, 4105.

110

Shimizu, T.; Xie, T.; Nishikawa, J.; Shingubara, S.; Senz, S.; Gösele, U. Synthesis of vertical high-density epitaxial Si(100) nanowire arrays on a Si(100) substrate using an anodic aluminum oxide template. Adv. Mater. 2007, 19, 917–920.

111

Nassiopoulou, A. G.; Gianneta, V.; Katsogridakis, C. Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: Formation kinetics. Nanoscale Res. Lett. 2011, 6, 597.

112

Chang, S. W.; Chuang, V. P.; Boles, S. T.; Ross, C. A.; Thompson, C. V. Densely packed arrays of ultra-high-aspect-ratio silicon nanowires fabricated using block-copolymer lithography and metal-assisted etching. Adv. Funct. Mater. 2009, 19, 2495–2500.

113

Huang, Z. P.; Zhang, X. X.; Reiche, M.; Liu, L. F.; Lee, W.; Shimizu, T.; Senz, S.; Gösele, U. Extended arrays of vertically aligned sub-10 nm diameter[100] Si nanowires by metal-assisted chemical etching. Nano Lett. 2008, 8, 3046–3051.

114

Huang, J.; Chiam, S. Y.; Tan, H. H.; Wang, S.; Chim, W. K. Fabrication of silicon nanowires with precise diameter control using metal nanodot arrays as a hard mask blocking material in chemical etching. Chem. Mater. 2010, 22, 4111–4116.

115

Huang, Z. P.; Shimizu, T.; Senz, S.; Zhang, Z.; Zhang, X. X.; Lee, W.; Geyer, N.; Gösele, U. Ordered arrays of vertically aligned[110] silicon nanowires by suppressing the crystallographically preferred < 100 > etching directions. Nano Lett. 2009, 9, 2519–2525.

DOI
116

Lotfabad, E. M.; Kalisvaart, P.; Kohandehghan, A.; Cui, K.; Kupsta, M.; Farbod B.; Mitlin, D. Si nanotubes ALD coated with TiO2, TiN or Al2O3 as high performance lithium ion battery anodes. J. Mater. Chem. A 2014, 2, 2504–2516.

117

Cho, J. H.; Picraux, S. T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett. 2013, 13, 5740–5747.

118

Peng, K. Q.; Wu, Y.; Fang, H.; Zhong, X. Y.; Xu, Y.; Zhu, J. Uniform, axial-orientation alignment of one-dimensional single-crystal silicon nanostructure arrays. Angew. Chem. Inter. Edit. 2005, 44, 2737–2742.

119

Kim, J. G.; Shi, D. Q.; Park, M. S.; Jeong, G.; Heo, Y. U.; Seo, M.; Kim, Y. J.; Kim, J. H.; Dou, S. X. Controlled Ag-driven superior rate-capability of Li4Ti5O12 anodes for lithium rechargeable batteries. Nano Res. 2013, 6, 365–372.

120

Chen, C. Y.; Wu, C. S.; Chou, C. J.; Yen, T. J. Morphological control of single-crystalline silicon nanowire arrays near room temperature. Adv. Mater. 2008, 20, 3811–3815.

121

Chen, H.; Wang, H.; Zhang, X. H.; Lee, C. S.; Lee, S. T. Wafer-scale synthesis of single-crystal zigzag silicon nanowire arrays with controlled turning angles. Nano Lett. 2010, 10, 864–868.

122

Bai, F.; To, W. K.; Huang, Z. Porosification-induced back-bond weakening in chemical etching of n-Si(111). J. Phys. Chem. C 2013, 117, 2203–2209.

123

Tsujino, K.; Matsumura, M. Morphology of nanoholes formed in silicon by wet etching in solutions containing HF and H2O2 at different concentrations using silver nanoparticles as catalysts. Electrochim. Acta 2007, 53, 28–34.

124

Tsujino, K.; Matsumura, M. Boring deep cylindrical nanoholes in silicon using silver nanoparticles as a catalyst. Adv. Mater. 2005, 17, 1045–1047.

125

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4302.

126

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

127

Dahn, J. R.; Zheng, T.; Liu, Y.; Xue, J. S. Mechanisms for lithium insertion in carbonaceous materials. Science 1995, 270, 590–593.

128

Winter, M.; Besenhard, J. O.; Spahr, M. E.; Novak, P. Insertion electrode materials for rechargeable lithium batteries. Adv. Mater. 1998, 10, 725–763.

DOI
129

Linden, D.; Reddy, T. B. Handbook of Batteries, 3rd edn; McGraw-Hill, 2002.

130

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

131

Yang, Y.; Jeong, S.; Hu, L. B.; Wu, H.; Lee, S. W.; Cui, Y. Transparent lithium-ion batteries. P. Natl. Acad. Sci. USA 2011, 108, 13013–13018.

132

Rolison, D. R.; Long, J. W.; Lytle, J. C.; Fischer, A. E.; Rhodes, C. P.; McEvoy, T. M.; Bourga, M. E.; Lubers, A. M. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem. Soc. Rev. 2009, 38, 226–252.

133

Beaulieu, L. Y.; Eberman, K. W.; Turner, R. L.; Krause, L. J.; Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid ST. 2001, 4, A137–A140.

134

Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 1999, 81, 13–19.

135

Wen, C. J.; Huggins, R. A. Chemical diffusion in intermediate phases in the lithium–silicon system. J. Solid State Chem. 1981, 37, 271–278.

136

Boukamp, B. A.; Lesh, G. C.; Huggins, R. A. All-solid lithium electrodes with mixed conductor matrix. J. Electrochem. Soc. 1981, 128, 725–729.

137

Shodai, T.; Okada, S.; Tobishima, S. I.; Yamaki, J. I. Study of Li3 - xMxN (M: Co, Ni or Cu) system for use as anode material in lithium rechargeable cells. Solid State Ionics 1996, 86–88, Part 2, 785–789.

138

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

139

Su, D. W.; Dou, S. X.; Wang, G. X. Mesocrystal Co3O4 nanoplatelets as high capacity anode materials for Li-ion batteries. Nano Res. 2014, 7, 794–803.

140

Kim, S. W.; Lee, H. W.; Muralidharan, P.; Seo, D. H.; Yoon, W. S.; Kim, D. K.; Kang, K., Electrochemical performance and ex situ analysis of ZnMn2O4 nanowires as anode materials for lithium rechargeable batteries. Nano Res. 2011, 4, 505–510.

141

Vlad, A.; Reddy, A. L. M.; Ajayan, A.; Singh, N.; Gohy, J. F.; Melinte, S.; Ajayan, P. M. Roll up nanowire battery from silicon chips. P. Natl. Acad. Sci. USA 2012, 109, 15168–15173.

142

Li, J.; Dahn, J. R. An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 2007, 154, A156–A161.

143

Beaulieu, L. Y.; Hatchard, T. D.; Bonakdarpour, A.; Fleischauer, M. D.; Dahn, J. R. Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc. 2003, 150, A1457–A1464.

144

Zhang, X. W.; Patil, P. K.; Wang, C. S.; Appleby, A. J.; Little, F. E.; Cocke, D. L., Electrochemical performance of lithium ion battery, nano-silicon-based, disordered carbon composite anodes with different microstructures. J. Power Sources 2004, 125, 206–213.

145

Maranchi, J. P.; Hepp, A. F.; Evans, A. G.; Nuhfer, N. T.; Kumta, P. N. Interfacial properties of the a-Si/Cu: Active–inactive thin-film anode system for lithium-ion batteries. J. Electrochem. Soc. 2006, 153, A1246–A1253.

146

Maranchi, J. P.; Hepp, A. F.; Kumta, P. N. High capacity, reversible silicon thin-film anodes for lithium-ion batteries. Electrochem. Solid ST. 2003, 6, A198–A201.

147

Park, M. S.; Lee, Y. J.; Rajendran, S.; Song, M. S.; Kim, H. S.; Lee, J. Y. Electrochemical properties of Si/Ni alloy–graphite composite as an anode material for Li-ion batteries. Electrochim. Acta 2005, 50, 5561–5567.

148

Szczech, J. R.; Jin, S. Nanostructured silicon for high capacity lithium battery anodes. Energ. Environ. Sci. 2011, 4, 56–72.

149

Jung, H. J.; Park, M.; Yoon, Y. G.; Kim, G. B.; Joo, S. K. Amorphous silicon anode for lithium-ion rechargeable batteries. J. Power Sources 2003, 115, 346–351.

150

Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life. J. Power Sources 2004, 136, 303–306.

151

Obrovac, M. N.; Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 2007, 154, A103–A108.

152

Ryu, J. H.; Kim, J. W.; Sung, Y. E.; Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid ST. 2004, 7, A306–A309.

153

Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.

154

McDowell, M. T.; Lee, S. W.; Harris, J. T.; Korgel, B. A.; Wang, C. M; Nix, W. D.; Cui, Y. In situ TEM of two-phase lithiation of amorphous silicon nanospheres. Nano Lett. 2013, 13, 758–764.

155

Chon, M. J.; Sethuraman, V. A.; McCormick, A.; Srinivasan, V.; Guduru, P. R. Real-time measurement of stress and damage evolution during initial lithiation of crystalline silicon. Phys. Rev. Lett. 2011, 107, 045503.

156

Ge, M.; Fang, X.; Rong, J.; Zhou, C. Review of porous silicon preparation and its application for lithium-ion battery anodes. Nanotechnology 2013, 24, 422001.

157

Yang, H.; Huang, S.; Huang, X.; Fan, F. F.; Liang, W. T.; Liu, X. H.; Chen, L. Q.; Huang, J. Y.; Li, J.; Zhu, T. et al. Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 2012, 12, 1953–1958.

158

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhou, C. W. Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 2012, 12, 2318–2323.

159

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

160

Ohara, S.; Suzuki, J.; Sekine, K.; Takamura, T. Li insertion/extraction reaction at a Si film evaporated on a Ni foil. J. Power Sources 2003, 119, 591–596.

161

Uehara, M.; Suzuki, J.; Tamura, K.; Sekine, K.; Takamura, T. Thick vacuum deposited silicon films suitable for the anode of Li-ion battery. J. Power Sources 2005, 146, 441–444.

162

Takamura, T.; Ohara, S.; Uehara, M.; Suzuki, J.; Sekine, K. A vacuum deposited Si film having a Li extraction capacity over 2, 000 mAh/g with a long cycle life. J. Power Sources 2004, 129, 96–100.

163

Li, F.; Yue, H.; Yang, Z.; Li, X.; Qin, Y.; He, D. Flexible free-standing graphene foam supported silicon films as high capacity anodes for lithium ion batteries. Mater. Lett. 2014, 128, 132–135.

164

Zhao, G. Y.; Meng, Y. F.; Zhang, N. Q.; Sun, K. N. Electrodeposited Si film with excellent stability and high rate performance for lithium-ion battery anodes. Mater. Lett. 2012, 76, 55–58.

165

Goldman, J. L.; Cason, M. W.; Wetzel, D. J.; Vieker, H.; Beyer, A.; Gölzhäuser, A.; Gewirth, A. A.; Nuzzo, R. G. Directed transport as a route to improved performance in micropore-modified encapsulated multilayer silicon electrodes. J. Electrochem. Soc. 2013, 160, A1746–A1752.

166

Hatchard, T. D.; Topple, J. M.; Fleischauer, M. D.; Dahn, J. R. Electrochemical performance of SiAlSn films prepared by combinatorial sputtering. Electrochem. Solid-State Lett. 2003, 6, A129–A132.

167

Hwang, C. M.; Lim, C. H.; Park, J. W. Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries. Thin Solid Films 2011, 519, 2332–2338.

168

Wilson, A. M.; Dahn, J. R. Lithium insertion in carbons containing nanodispersed silicon. J. Electrochem. Soc. 1995, 142, 326–332.

169

Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochem Solid ST. 1999, 2, 547–549.

170

Li, H.; Huang, X. J.; Chen, L. Q.; Zhou, G. W.; Zhang, Z.; Yu, D. P.; Mo, Y. J.; Pei, N. The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics 2000, 135, 181–191.

171

Lee, H. Y.; Lee, S. M. Graphite–FeSi alloy composites as anode materials for rechargeable lithium batteries. J. Power Sources 2002, 112, 649–654.

172

Weydanz, W. J.; Wohlfahrt-Mehrens, M.; Huggins, R. A. A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries. J. Power Sources 1999, 81, 237–242.

173

Hwang, S. M.; Lee, H. Y.; Jang, S. W.; Lee, S. M.; Lee, S. J.; Baik, H. K.; Lee, J. Y. Lithium insertion in SiAg powders produced by mechanical alloying. Electrochem. Solid-State Lett. 2001, 4, A97–A100.

174

Kim, I. S.; Blomgren, G. E.; Kumta, P. N. Nanostructured Si/TiB2 composite anodes for Li-ion batteries. Electrochem. Solid-State Lett. 2003, 6, A157–A161.

175

Dimov, N.; Kugino, S.; Yoshio, M. Carbon-coated silicon as anode material for lithium ion batteries: Advantages and limitations. Electrochim. Acta 2003, 48, 1579–1587.

176

Yang, J.; Wang, B. F.; Wang, K.; Liu, Y.; Xie, J. Y.; Wen, Z. S. Si/C composites for high capacity lithium storage materials. Electrochem. Solid ST. 2003, 6, A154–A156.

177

Beaulieu, L. Y.; Hewitt, K. C.; Turner, R. L.; Bonakdarpour, A.; Abdo, A. A.; Christensen, L.; Eberman, K. W.; Krause, L. J.; Dahn, J. R. The electrochemical reaction of Li with amorphous Si–Sn alloys. J. Electrochem. Soc. 2003, 150, A149–A156.

178

Kim, J. W.; Ryu, J. H.; Lee, K. T.; Oh, S. M. Improvement of silicon powder negative electrodes by copper electroless deposition for lithium secondary batteries. J. Power Sources 2005, 147, 227–233.

179

Kim, H. S.; Chung, K. Y.; Cho, L. W. Effect of carbon-coated silicon/graphite composite anode on the electrochemical properties. B. Korean Chem. Soc. 2008, 29, 1965–1968.

180

Dong, H.; Ai, X. P.; Yang, H. X. Carbon/Ba–Fe–Si alloy composite as high capacity anode materials for Li-ion batteries. Electrochem. Commun. 2003, 5, 952–957.

181

Jung, Y. S.; Lee, K. T.; Oh, S. M. Si–carbon core–shell composite anode in lithium secondary batteries. Electrochim. Acta 2007, 52, 7061–7067.

182

Xu, Y. H.; Yin, G. P.; Ma, Y. L.; Zuo, P. J.; Cheng, X. Q. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J. Mater. Chem. 2010, 20, 3216–3220.

183

Kim, H.; Cho, J. Superior lithium electroactive mesoporous Si@carbon core-shell nanowires for lithium battery anode material. Nano Lett. 2008, 8, 3688–3691.

184

Magasinski, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom–up approach. Nat. Mater. 2010, 9, 353–358.

185

Ge, M. Y.; Rong, J. P.; Fang, X.; Zhang, A. Y.; Lu, Y. H.; Zhou, C. W. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

186

Arie, A. A.; Chang, W.; Lee, J. K. Electrochemical characteristics of semi conductive silicon anode for lithium polymer batteries. J. Electroceram. 2010, 24, 308–312.

187

Kong, M. H.; Noh, J. H.; Byun, D. J.; Lee, J. K. Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries. J. Electroceram. 2009, 23, 376–381.

188

Garnett, E. C.; Tseng, Y. C.; Khanal, D. R.; Wu, J. Q.; Bokor, J.; Yang, P. D. Dopant profiling and surface analysis of silicon nanowires using capacitance–voltage measurements. Nat. Nanotechnol. 2009, 4, 311–314.

189

Xu, W. L.; Vegunta, S. S. S.; Flake, J. C. Surface-modified silicon nanowire anodes for lithium-ion batteries. J. Power Sources 2011, 196, 8583–8589.

190

Xu, W. L.; Flake, J. C. Composite silicon nanowire anodes for secondary lithium-ion cells. J. Electrochem. Soc. 2010, 157, A41–A45.

191

Huang, J. Y.; Zhong, Li.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Sabramanian, A. et al. In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

192

Huang, R.; Zhu, J. Silicon nanowire array films as advanced anode materials for lithium-ion batteries. Mater. Chem. Phys. 2010, 121, 519–522.

193

Zhang, Q. F.; Zhang, W. X.; Wan, W. H.; Cui, Y.; Wang, E. G. Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 2010, 10, 3243–3249.

194

Peng, B.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Lithium transport at silicon thin film: Barrier for high-rate capability anode. J. Chem. Phys. 2010, 133, 034701.

195

Long, B. R.; Chan, M. K. Y.; Greeley, J. P.; Gewirth, A. A. Dopant modulated Li insertion in Si for battery anodes: Theory and experiment. J. Phys. Chem. C 2011, 115, 18916–18921.

196

Rousselot, S.; Gauthier, M.; Mazouzi, D.; Lestriez, B.; Guyomard, D.; Roué, L. Synthesis of boron-doped Si particles by ball milling and application in Li-ion batteries. J. Power Sources 2012, 202, 262–268.

197

McSweeney, W.; Lotty, O.; Glynn, C.; Geaney, H.; Holmes, J. D.; O'Dwyer, C. The influence of carrier density and doping type on lithium insertion and extraction processes at silicon surfaces. Electrochim. Acta 2014, 135, 356–367.

198

Wang, G. X.; Sun, L.; Bradhurst, D. H.; Zhong, S.; Dou, S. X.; Liu, H. K. Innovative nanosize lithium storage alloys with silica as active centre. J. Power Sources 2000, 88, 278–281.

199

Zuo, P.; Yang, W.; Cheng, X.; Yin, G. Enhancement of the electrochemical performance of silicon/carbon composite material for lithium ion batteries. Ionics 2011, 17, 87–90.

200

Graetz, J.; Ahn, C. C.; Yazami, R.; Fultz, B. Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid ST. 2003, 6, A194–A197.

201

Takamura, T.; Uehara, M.; Suzuki, J.; Sekine, K.; Tamura, K. High capacity and long cycle life silicon anode for Li-ion battery. J. Power Sources 2006, 158, 1401–1404.

202

Green, M.; Fielder, E.; Scrosati, B.; Wachtler, M.; Moreno, J. S. Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 2003, 6, A75–A79.

203

Xu, W. L.; Flake, J. C. Composite silicon nanowire anodes for secondary lithium-ion cells. J. Electrochem. Soc. 2010, 157, A41–A45.

204

Kang, K.; Lee, H. S.; Han, D. W.; Kim, G. S.; Lee, D.; Lee, G.; Kang, Y. M.; Jo, M. H. Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery. Appl. Phys. Lett. 2010, 96, 053110.

205

Chan, C. K.; Patel, R. N.; O'Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.

206

Wan, J.; Kaplan, A. F.; Zheng, J.; Han, X.; Chen, Y.; Weadock, N. J.; Faenza, N.; Lacey, S.; Li, T.; Guo, J. et al. Two dimensional silicon nanowalls for lithium ion batteries. J Mater. Chem. A 2014, 2, 6051–6057.

207

Cui, L. F.; Yang, Y.; Hsu, C. M.; Cui, Y., Carbon–silicon core–shell nanowires as high capacity electrode for lithium ion batteries. Nano Lett. 2009, 9, 3370–3374.

208

Cui, L. F.; Ruffo, R.; Chan, C. K.; Peng, H. L.; Cui, Y., Crystalline–amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 2009, 9, 491–495.

209

Xie, J.; Wang, G.; Huo, Y.; Zhang, S.; Cao, G.; Zhao, X. Nanostructured silicon spheres prepared by a controllable magnesiothermic reduction as anode for lithium ion batteries. Electrochim. Acta 2014, 135, 94–100.

210

Wu, H.; Chan, G.; Choi, J. W.; Ryu, I.; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B. et al. Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 2012, 7, 310–315.

211

Liu, N.; Lu, Z. D.; Zhao, J.; McDowell, M. T.; Lee, H. W.; Zhao, W. T.; Cui, Y. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 2014, 9, 187–192.

212

Hu, L. B.; Wu, H.; Hong, S. S.; Cui, L. F.; McDonough, J. R.; Bohy, S.; Cui, Y. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chem. Commun. 2011, 47, 367–369.

213

Huang, R.; Fan, X.; Shen, W. C.; Zhu, J. Carbon-coated silicon nanowire array films for high-performance lithium-ion battery anodes. Appl. Phys. Lett. 2009, 95, 133119.

214

Yang, Y.; McDowell, M. T.; Jackson, A.; Cha, J. J.; Hong, S. S.; Cui, Y. New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett. 2010, 10, 1486–1491.

215

Osiak, M.; Geaney, H.; Armstrong, E.; O'Dwyer, C. Structuring materials for lithium-ion batteries: Advancements in nanomaterial structure, composition, and defined assembly on cell performance. J. Mater. Chem. A 2014, 2, 9433–9460.

216

Foell, H.; Hartz, H.; Ossei-Wusu, E.; Carstensen, J.; Riemenschneider, O. Si nanowire arrays as anodes in Li ion batteries. Phys. Status Solidi RRL. 2010, 4, 4–6.

217

Díaz, C.; Valenzuela, M. L.; Bravo, D.; Lavayen, V.; O'Dwyer, C., Synthesis and characterization of cyclotriphosphazene containing silicon as single solid state precursors for the formation of silicon/phosphorus nanostructured materials. Inorg. Chem. 2008, 47, 11561–11569.

218

Diaz, C.; Valenzuela, M. L.; Ushak, S.; Lavayen, V.; O'Dwyer, C. Nanostructured silicon-containing materials derived from solid-state pyrolysis of sililated polyphosphazene derivatives. J. Nanosci. Nanotechnol. 2009, 9, 1825–1831.

219

Wagner, M. W.; Schmied, M.; Preishuber-Pflugl, P.; Stelzer, F.; Besenhard, J. O.; Winter, M. In 10th International Meeting of Lithium Batteries, Como, Italy, 2000.

220

Wu, M.; Sabisch, J. E. C.; Song, X.; Minor, A. M.; Battaglia, V. S.; Liu, G. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett. 2013, 13, 5397–5402.

221

Jeong, Y. K.; Kwon, T. W.; Lee, I.; Kim, T. S.; Coskun, A.; Choi, J. W. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 2014, 14, 864–870.

222

Hwa, Y.; Kim, W. S.; Hong, S. H.; Sohn, H. J. High capacity and rate capability of core–shell structured nano-Si/C anode for Li-ion batteries. Electrochim. Acta 2012, 71, 201–205.

223

Kuksenko, S.; Konovalenko, I. Silicon nanopowder as active material for hybrid electrodes of lithium-ion batteries. Russ. J. Appl. Chem. 2011, 84, 1179–1187.

224

Lai, J.; Guo, H. J.; Wang, Z. X.; Li, X. H.; Zhang, X. P.; Wu, F. X.; Yue, P., Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries. J. Alloys Compd. 2012, 530, 30–35.

225

Chan, C. K.; Ruffo, R.; Hong, S. S.; Huggins, R. A.; Cui, Y. Structural and electrochemical study of the reaction of lithium with silicon nanowires. J. Power Sources 2009, 189, 34–39.

226

Chan, C. K.; Zhang, X. F.; Cui, Y. High capacity Li ion battery anodes using Ge nanowires. Nano Lett. 2008, 8, 307–309.

227

Wu, Y.; Yang, P. Direct observation of vapor–liquid–solid nanowire growth. J. Am. Chem. Soc. 2001, 123, 3165–3166.

228

Du, N.; Zhang, H.; Fan, X.; Yu, J. X.; Yang, D. R. Large-scale synthesis of silicon arrays of nanowire on titanium substrate as high-performance anode of Li-ion batteries. J. Alloys Compd. 2012, 526, 53–58.

229

Cho, J. H.; Picraux, S. T. Enhanced lithium ion battery cycling of silicon nanowire anodes by template growth to eliminate silicon underlayer islands. Nano Lett. 2013, 13, 5740–5747.

230

Gohier, A.; Laik, B.; Pereira-Ramos, J. P.; Cojocaru, C. S.; Tran-Van, P. Influence of the diameter distribution on the rate capability of silicon nanowires for lithium-ion batteries. J. Power Sources 2012, 203, 135–139.

231

Perea, D. E.; Hemesath, E. R.; Schwalbach, E. J.; Lensch-Falk, J. L.; Voorhees, P. W.; Lauhon, L. J. Direct measurement of dopant distribution in an individual vapour–liquid–solid nanowire. Nat. Nanotechnol. 2009, 4, 315–319.

232

Chockla, A. M.; Klavetter, K. C.; Mullins, C. B.; Korgel, B. A. Tin-seeded silicon nanowires for high capacity li-ion batteries. Chem. Mater. 2012, 24, 3738–3745.

233

He, R. R.; Gao, D.; Fan, R.; Hochbaum, A. I.; Carraro, C.; Maboudian, R.; Yang, P. D. Si nanowire bridges in microtrenches: Integration of growth into device fabrication. Adv. Mater. 2005, 17, 2098–2102.

234

Heitsch, A. T.; Akhavan, V. A.; Korgel, B. A., Rapid SFLS synthesis of Si nanowires using Trisilane with in situ alkyl-amine passivation. Chem. Mat. 2011, 23, 2697–2699.

235

Bogart, T. D.; Lu, X.; Korgel, B. A. Precision synthesis of silicon nanowires with crystalline core and amorphous shell. Dalton Trans. 2013, 42, 12675–12680.

236

Mullane, E.; Kennedy, T.; Geaney, H.; Dickinson, C.; Ryan, K. M. Synthesis of tin catalyzed silicon and germanium nanowires in a solvent–vapor system and optimization of the seed/nanowire interface for dual lithium cycling. Chem. Mater. 2013, 25, 1816–1822.

237

Geaney, H.; Kennedy, T.; Dickinson, C.; Mullane, E.; Singh, A.; Laffir, F.; Ryan, K. M. High density growth of indium seeded silicon nanowires in the vapor phase of a high boiling point solvent. Chem. Mater. 2012, 24, 2204–2210.

238

Zhao, X.; Rui, X.; Zhou, W.; Tan, L.; Yan, Q.; Lu, Z.; Hng, H. H. Growth of Si nanowires in porous carbon with enhanced cycling stability for Li-ion storage. J. Power Sources 2014, 250, 160–165.

239

Gu, M.; Wang, Z. G.; Connell, J. G.; Perea, D. E.; Lauhon, L. J.; Gao, F.; Wang, C. M. Electronic origin for the phase transition from amorphous LixSi to crystalline Li15Si4. ACS Nano 2013, 7, 6303–6309.

240

Bogart, T. D.; Lu, X. T.; Gu, M.; Wang, C. M.; Korgel, B. A. Enhancing the lithiation rate of silicon nanowires by the inclusion of tin. RSC Adv. 2014, 4, 42022–42028.

241

Yin, J. T.; Wada, M.; Yamamoto, K.; Kitano, Y.; Tanase, S.; Sakai, T. Micrometer-scale amorphous Si thin-film electrodes fabricated by electron-beam deposition for Li-ion batteries. J. Electrochem. Soc. 2006, 153, A472–A477.

242

Ohara, S.; Suzuki, J. J.; Sekine, K.; Takamura, T. Attainment of high rate capability of Si film as the anode of Li-ion batteries. Electrochemistry 2003, 71, 1126–1128.

243

Limthongkul, P.; Jang, Y. I.; Dudney, N. J.; Chiang, Y. M., Electrochemically-driven solid-state amorphization in lithium–silicon alloys and implications for lithium storage. Acta Mater. 2003, 51, 1103–1113.

244

Kim, G.; Jeong, S.; Shin, J. H.; Cho, J.; Lee, H. 3D amorphous silicon on nanopillar copper electrodes as anodes for high-rate lithium-ion batteries. ACS Nano 2014, 8, 1907–1912.

245

Li, X. P.; Xiao, Y. J.; Yan, C. L.; Zhou, K. Y.; Miclea, P. T.; Meyer, S.; Schweizer, S. L.; Sprafke, A.; Lee, J. H.; Wehrspohn, R. B. Self-purification model for metal-assisted chemical etching of metallurgical silicon. Electrochim. Acta 2014, 138, 476–480.

246

Xu, Y. H.; Yin, G. P.; Ma, Y. L.; Zuo, P. J.; Cheng, X. Q. Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source. J. Mater. Chem. 2010, 20, 3216–3220.

247

Lee, K. T.; Jung, Y. S.; Oh, S. M. Synthesis of tin-encapsulated spherical hollow carbon for anode material in lithium secondary batteries. J. Am. Chem. Soc. 2003, 125, 5652–5653.

248

Zhang, T.; Gao, J.; Zhang, H. P.; Yang, L. C.; Wu, Y. P.; Wu, H. Q. Preparation and electrochemical properties of core–shell Si/SiO nanocomposite as anode material for lithium ion batteries. Electrochem. Commun. 2007, 9, 886–890.

249

Wang, D.; Yang, Z.; He, D. Electrochemical performances of nanorod structured Si1-xGex anodes. Mater. Lett. 2014, 128, 163–166.

250

Tu, J.; Hu, L.; Wang, W.; Hou, J.; Zhu, H.; Jiao, S. In-situ synthesis of silicon/polyaniline core/shell and its electrochemical performance for lithium-ion batteries. J. Electrochem. Soc. 2013, 160, A1916–A1921.

251

Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Cu–Si1-xGex core–shell nanowire arrays as three-dimensional electrodes for high-rate capability lithium-ion batteries. J. Power Sources 2012, 208, 434–439.

252

Luo, J.; Zhao, X.; Wu, J.; Jang, H. D.; Kung, H. H.; Huang, J. Crumpled graphene-encapsulated Si nanoparticles for lithium ion battery anodes. J. Phys. Chem. Lett. 2012, 3, 1824–1829.

253

Chen, X. L.; Gerasopoulos, K.; Guo, J. C.; Brown, A.; Wang, C. S.; Ghodssi, R.; Culver, J. N. A patterned 3D silicon anode fabricated by electrodeposition on a virus-structured current collector. Adv. Funct. Mater. 2011, 21, 380–387.

254

Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.

255

Hwang, C. M.; Lim, C. H.; Park, J. W. Evaluation of Si/Ge multi-layered negative film electrodes using magnetron sputtering for rechargeable lithium ion batteries. Thin Solid Films 2011, 519, 2332–2338.

256

Bang, B. M.; Kim, H.; Lee, J. P.; Cho, J.; Park, S. Mass production of uniform-sized nanoporous silicon nanowire anodes via block copolymer lithography. Energy Environ. Sci. 2011, 4, 3395–3399.

257

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

258

Wang, B.; Li, X.; Qiu, T.; Luo, B.; Ning, J.; Li, J.; Zhang, X.; Liang M.; Zhi, L. High volumetric capacity silicon-based lithium battery anodes by nanoscale system engineering. Nano Lett. 2013, 13, 5578–5584.

259

Chadwick, E. G.; Mogili, V.; O'Dwyer, C.; Moore, J.; Fletcher, J.; Laffir, F.; Armstrong, G.; Tanner, D. A. Compositional characterization of metallurgical grade silicon and porous silicon nanosponge particles. RSC Adv. 2013, 3, 19393–19402.

260

Chakrapani, V.; Rusli, F.; Filler, M. A.; Kohl, P. A., Silicon nanowire anode: Improved battery life with capacity-limited cycling. J. Power Sources 2012, 205, 433–438.

261

Liu, X. H. et al. Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 2011, 11, 2251–2258.

262

Ge, M.; Rong, J.; Fang, X.; Zhang, A.; Lu, Y.; Zhou, C. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 2013, 6, 174–181.

263

Zhou, X. S.; Yin, Y. X.; Cao, A. M.; Wan, L. J.; Guo, Y. G. Efficient 3D conducting networks built by graphene sheets and carbon nanoparticles for high-performance silicon anode. ACS Appl. Mater. Interfaces 2012, 4, 2824–2828.

264

Zhang, P.; Wang, L.; Xie, J.; Su, L.; Ma, C. A. Micro/nano-complex-structure SiOx-PANI-Ag composites with homogeneously-embedded Si nanocrystals and nanopores as high-performance anodes for lithium ion batteries. J. Mater. Chem. A 2014, 2, 3776–3782.

265

Tao, H. C.; Fan, L. Z.; Qu, X. Facile synthesis of ordered porous Si@C nanorods as anode materials for Li-ion batteries. Electrochim. Acta 2012, 71, 194–200.

266

Zhu, Y.; Liu, W.; Zhang, X.; He, J.; Chen, J.; Wang, Y.; Cao, T. Directing silicon-graphene self-assembly as a core/shell anode for high-performance lithium-ion batteries. Langmuir 2013, 29, 744–749.

267

Shen, J.; Ahn, D.; Raj, R. C-rate performance of silicon oxycarbide anodes for Li+ batteries enhanced by carbon nanotubes. J. Power Sources 2011, 196, 2875–2878.

268

Guo, C.; Wang, D.; Liu, T.; Zhu J.; Lang, X. A three dimensional SiOx/C@RGO nanocomposite as a high energy anode material for lithium-ion batteries. J. Mater. Chem. A 2014, 2, 3521–3527.

269

Bogart, T. D.; Oka, D.; Lu, X.; Gu, M.; Wang, C.; Korgel, B. A. Lithium ion battery peformance of silicon nanowires with carbon skin. ACS Nano 2013, 8, 915–922.

270

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

271

Magasinki, A.; Dixon, P.; Hertzberg, B.; Kvit, A.; Ayala, J.; Yushin, G. High-performance lithium-ion anodes using a hierarchical bottom–up approach. Nat. Mater. 2010, 9, 353.

272

Thakur, M.; Sinsabaugh, S.; Isaacson, M. J.; Wong, M. S.; Biswal, S. L. Inexpensive method for producing macroporous silicon particulates (MPSPs) with pyrolyzed polyacrylonitrile for lithium ion batteries. Sci. Rep. 2012, 2, 795.

273

Xiao, X.; Liu, X.; Wang, L.; Zhao, H.; Hu, Z.; He, X.; Li, Y. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395–401.

Publication history
Copyright
Acknowledgements

Publication history

Received: 27 August 2014
Revised: 26 November 2014
Accepted: 30 November 2014
Published: 26 March 2015
Issue date: May 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

WMS acknowledges support under the framework of the INSPIRE programme, funded by the Irish Government's Programme for Research in Third Level Institutions, Cycle 4, National Development Plan 2007-2013. COD acknowledges support from Science Foundation Ireland under Award No. 07/SK/B1232a-STTF11 from the UCC Strategic Research Fund.

Return