Journal Home > Volume 8 , Issue 5

Real-time and objective feedback of therapeutic efficacies would be of great value for tumor treatment. Here, we report a smart Ag2S QD-based theranostic nanoplatform (DOX@PEG-Ag2S) obtained by loading the anti-cancer drug doxorubicin (DOX) into polyethylene glycol-coated silver sulfide quantum dots (PEG-Ag2S QDs) through hydrophobic-hydrophobic interactions, which exhibited high drug loading capability (93 wt.% of DOX to Ag2S QDs), long circulation in blood (t1/2 = 10.3 h), and high passive tumor-targeting efficiency (8.9% ID/gram) in living mice where % ID/gram reflects the probe concentration in terms of the percentage of the injected dose (ID) per gram of tissue. After targeting the tumor tissue, DOX from PEG-Ag2S cargoes was selectively and rapidly released into cancer cells, giving rise to a significant tumor inhibition. Owing to the deep tissue penetration and high spatio-temporal resolution of Ag2S QDs fluorescence in the second near-infrared window (NIR-Ⅱ), the DOX@PEG-Ag2S enabled real-time in vivo reading of the drug targeting process and therapeutic efficacy. We expect that such a novel theranostic nanoplatform, DOX@PEG-Ag2S, with integrated drug delivery, therapy and assessment functionalities, will be highly useful for personalized treatments of tumors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Real-time in vivo visualization of tumor therapy by a near-infrared-Ⅱ Ag2S quantum dot-based theranostic nanoplatform

Show Author's information Feng Hu§Chunyan Li§Yejun ZhangMao WangDongming WuQiangbin Wang( )
Key Laboratory of Nano-Bio InterfaceDivision of Nanobiomedicine and i-LabSuzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of SciencesSuzhou215123China

§ These authors contributed equally to this work.

Abstract

Real-time and objective feedback of therapeutic efficacies would be of great value for tumor treatment. Here, we report a smart Ag2S QD-based theranostic nanoplatform (DOX@PEG-Ag2S) obtained by loading the anti-cancer drug doxorubicin (DOX) into polyethylene glycol-coated silver sulfide quantum dots (PEG-Ag2S QDs) through hydrophobic-hydrophobic interactions, which exhibited high drug loading capability (93 wt.% of DOX to Ag2S QDs), long circulation in blood (t1/2 = 10.3 h), and high passive tumor-targeting efficiency (8.9% ID/gram) in living mice where % ID/gram reflects the probe concentration in terms of the percentage of the injected dose (ID) per gram of tissue. After targeting the tumor tissue, DOX from PEG-Ag2S cargoes was selectively and rapidly released into cancer cells, giving rise to a significant tumor inhibition. Owing to the deep tissue penetration and high spatio-temporal resolution of Ag2S QDs fluorescence in the second near-infrared window (NIR-Ⅱ), the DOX@PEG-Ag2S enabled real-time in vivo reading of the drug targeting process and therapeutic efficacy. We expect that such a novel theranostic nanoplatform, DOX@PEG-Ag2S, with integrated drug delivery, therapy and assessment functionalities, will be highly useful for personalized treatments of tumors.

Keywords: drug delivery, in vivo imaging, tumor therapy, Ag2S quantum dots, second near-infrared window fluorescence

References(35)

1

Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA: Cancer J. Clin. 2013, 63, 11-30.

2

Gregoriadis, G. Engineering liposomes for drug delivery: Progress and problems. Trends Biotechnol. 1995, 13, 527-537.

3

O'Brien, M. E. R.; Wigler, N.; Inbar, M.; Rosso, R.; Grischke, E.; Santoro, A.; Catane, R.; Kieback, D. G.; Tomczak, P.; Ackland, S. P.; et al. Reduced cardiotoxicity and comparable efficacy in a phase Ⅲ trial of pegylated liposomal doxorubicin HCl (CAELYXTM/Doxil®) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann. Oncol. 2004, 15, 440-449.

4

Duncan, R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003, 2, 347-360.

5

Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 2006, 6, 688-701.

6

Lee, J. E.; Lee, N.; Kim, T.; Kim, J.; Hyeon, T. Multifunctional mesoporous silica nanocomposite nanoparticles for theranostic applications. Acc. Chem. Res. 2011, 44, 893-902.

7

Shen, D. K.; Yang, J. P.; Li, X. M.; Zhou, L.; Zhang, R. Y.; Li, W.; Chen, L.; Wang, R.; Zhang, F.; Zhao, D. Y. Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014, 14, 923-932.

8

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N.; et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325-337.

9

Yoo, D.; Lee, J. -H.; Shin, T. -H.; Cheon, J. Theranostic magnetic nanoparticles. Acc. Chem. Res. 2011, 44, 863-874.

10

Ling, D.; Park, W.; Park, S. -J.; Lu, Y.; Kim, K. S.; Hackett, M. J.; Kim, B. H.; Yim, H.; Jeon, Y. S.; Na, K.; et al. Multifunctional tumor pH-sensitive self-assembled nanoparticles for bimodal imaging and treatment of resistant heterogeneous tumors. J. Am. Chem. Soc. 2014, 136, 5647-5655.

11

Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1-9.

12

Qian, X. M.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. M. In vivo tumor targeting and spectroscopic detection with surface-enhanced raman nanoparticle tags. Nat. Biotechnol. 2008, 26, 83-90.

13

Rosi, N. L.; Mirkin, C. A. Nanostructures in biodiagnostics. Chem. Rev. 2005, 105, 1547-1562.

14

Hu, M.; Chen, J. Y.; Li, Z. -Y.; Au, L.; Hartland, G. V.; Li, X. D.; Marquez, M.; Xia, Y. N. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem. Soc. Rev. 2006, 35, 1084-1094.

15

Dreaden, E. C.; Mackey, M. A.; Huang, X. H.; Kang, B.; El-Sayed, M. A. Beating cancer in multiple ways using nanogold. Chem. Soc. Rev. 2011, 40, 3391-3404.

16

Zhang, B.; Price, J.; Hong, G. S.; Tabakman, S. M.; Wang, H. L.; Jarrell, J. A.; Feng, J.; Utz, P. J.; Dai, H. J. Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Res. 2013, 6, 113-120.

17

Liu, Y.; Yin, J. -J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res. 2014, 7, 1719-1730.

18

Cheng, L.; Wang, C.; Feng, L. Z.; Yang, K.; Liu, Z. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 2014, 114, 10869-10939.

19

Allen, T. M.; Cullis, P. R. Drug delivery systems: Entering the mainstream. Science 2004, 303, 1818-1822.

20

Bakueva, L.; Gorelikov, I.; Musikhin, S.; Zhao, X. S.; Sargent, E. H.; Kumacheva, E. PbS quantum dots with stable efficient luminescence in the near-IR spectral range. Adv. Mater. 2004, 16, 926-929.

21

Wehrenberg, B. L.; Wang, C. J.; Guyot-Sionnest, P. Interband and intraband optical studies of PbSe colloidal quantum dots. J. Phys. Chem. B 2002, 106, 10634-10640.

22

Dong, B. H.; Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Zhang, Y.; Deng, M. J.; Wang, Q. B. Facile synthesis of highly photoluminescent Ag2Se quantum dots as a new fluorescent probe in the second near-infrared window for in vivo imaging. Chem. Mater. 2013, 25, 2503-2509.

23

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773-780.

24

Hong, G. S; Diao, S.; Chang, J. L; Antaris, A. L.; Chen, C. X.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I.; et al. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723-730.

25

Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470-1471.

26

Zhang, Y.; Hong, G. S.; Zhang, Y. J.; Chen, G. C.; Li, F.; Dai, H. J.; Wang, Q. B. Ag2S quantum dot: A bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano 2012, 6, 3695-3702.

27

Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 2012, 51, 9818-9821.

28

Chen, G. C.; Tian, F.; Zhang, Y.; Zhang, Y. J.; Li, C. Y.; Wang, Q. B. Tracking of transplanted human mesenchymal stem cells in living mice using near-infrared Ag2S quantum dots. Adv. Funct. Mater. 2014, 24, 2481-2488.

29

Li, C. Y.; Zhang, Y. J.; Wang, M.; Zhang, Y.; Chen, G. C.; Li, L.; Wu, D. M.; Wang, Q. B. In vivo real-time visualization of tissue blood flow and angiogenesis using Ag2S quantum dots in the NIR-Ⅱ window. Biomaterials 2014, 35, 393-400.

30

Zhang, Y. J.; Liu, Y. S.; Li, C. Y.; Chen, X. Y.; Wang, Q. B. Controlled synthesis of Ag2S quantum dots and experimental determination of the exciton Bohr radius. J. Phys. Chem. C 2014, 118, 4918-4923.

31

Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783-4787.

32

Wang, C.; Cheng, L.; Liu, Z. Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 2011, 32, 1110-1120.

33

Yao, L. M.; Zhou, J.; Liu, J. L.; Feng, W.; Li, F. Y. Iridium-complex-modified upconversion nanophosphors for effective LRET detection of cyanide anions in pure water. Adv. Funct. Mater. 2012, 22, 2667-2672.

34

Gao, Y.; Chen, Y.; Ji, X. F.; He, X. Y.; Yin, Q.; Zhang, Z. W.; Shi, J. L.; Li, Y. P. Controlled intracellular release of doxorubicin in multidrug-resistant cancer cells by tuning the shell-pore sizes of mesoporous silica nanoparticles. ACS Nano 2011, 5, 9788-9798.

35

Ballou, B.; Lagerholm, B. C.; Ernst, L. A.; Bruchez, M. P.; Waggoner, A. S. Noninvasive Imaging of Quantum Dots in Mice. Bioconjugate Chem. 2004, 15, 79-86.

File
12274_2014_653_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 October 2014
Revised: 18 November 2014
Accepted: 21 November 2014
Published: 28 April 2015
Issue date: May 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015

Acknowledgements

Acknowledgements

This work was financially supported by the Chinese Academy of Sciences "Strategic Priority Research Program" (No. XDA01030200), the Ministry of Science and Technology of China (No. 2011CB965004), the National Natural Science Foundation of China (Nos. 21303249, 21301187, and 81401464), and the Natural Science Foundation of Jiangsu Province (Nos. BK2012007 and BK20130366).

Return