Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
A complex micelle as a hemoglobin functional model with the biaoactive function of reversible oxygen transfer has been constructed through the hierarchical assembly of the diblock copolymer poly(ethylene glycol)-blockpoly(4-vinylpyridine-co-N-heptyl-4-vinylpyridine) (PEG-b-P(4VP-co-4VPHep)), tetrakis(4-sulfonatophenyl)porphinato iron(II) (Fe(II)TPPS) and β-cyclodextrin (β-CD). The μ-oxo dimer of Fe(II)TPPS was successfully inhibited because the Fe(II)TPPS was included into the cavities of β-CDs through host-guest interaction. Fe(II)TPPS coordinated with pyridine groups functions as the active site to reversibly bind dioxygen. In adition, the host-guest inclusion (β-CD/Fe(II)TPPS) was encapsulated in the hydrophobic core of the complex micelle and tightly fixed by P4VP chains. The hydrophilic PEG blocks stretched in aqueous solution to constitute the shells which stabilize the structure of the complex micelle as well as endow the complex micelle with sufficient blood circulation time. Dioxygen can be bound to the Fe(II)TPPS located in the confined space and excellent reversibility of the binding-release process of dioxygen can be achieved. The quaternary amine N-heptyl-4-vinylpyridine can coerce abundant S2O42- ions into the core of the complex micelle to facilitate the self-reduction process. Dioxygen adducts (Fe(II)TPPS(O2)) were effectively protected by the double hydrophobic barriers constructed by the cavity of the cyclodextrin and the core of the complex micelle which enhances the ability to resist nucleophilic molecules. Therefore, the rationally designed amphiphilic structure can work as a promising artificial O2 carrier. Potentially, the complex micelle can be expected to improve the treatment of diseases linked with hypoxia.
Ikkala, O.; Brinke, G. T. Functional materials based on self-assembly of polymeric supramolecules. Science 2002, 295, 2407-2409.
Zhang, S. G. Fabricationof novel biomaterials through molecular self-assembly. Nat. Biotechnol. 2003, 21, 1171-1178.
Dickerson, R. E.; Geis, I. Hemoglobin: Structure, Function, Evolution, and Pathology; Benjamin/Cummings: Menlo Park, CA, 1983.
Zhang, K.; Zhu, L. L.; Fan, M. Oxygen, a key factor regulating cell behavior during neurogenesis and cerebral diseases. Front Mol. Neurosci. 2011, 4, 1-11.
Schmedtje Jr, J. F.; Ji, Y. -S. Hypoxia and molecular cardiovascular medicine. Trends. Cardiovasc. Med. 1998, 8, 24-33.
Wilson, W. R.; Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393-410.
Harris, A. L. Hypoxia—a key regulatory factor in tumour growth. Nat. Rev. Cancer. 2002, 2, 38-47.
Facciabene, A.; Peng, X. H.; Hagemann, I. S.; Balint, K.; Barchetti, A.; Wang, L. -P.; Gimmoty, P. A.; Glilks, B.; Lal, P.; Zhang, L.; et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 2011, 475, 226-230.
Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer. 2004, 4, 437-447.
Wang, L. -Y.; Shi, X. -Y.; Yang, C. -S.; Huang, D. -M. Versatile RBC-derived vesicles as nanoparticle vector of photosensitizers for photodynamic therapy. Nanoscale 2013, 5, 416-421.
Reedy, C. J.; Gibney, B. R. Heme protein assemblies. Chem. Rev. 2004, 104, 617-649.
Lukin, J. A.; Ho, C. The structure—function relationship of hemoglobin in solution at atomic resolution. Chem. Rev. 2004, 104, 1219-1230.
Shikama, K. The molecular mechanism of autoxidation for myoglobin and hemoglobin: A venerable puzzle. Chem. Rev. 1998, 98, 1357-1373.
Collman, J. P.; Boulatov, R.; Sunderland, C. J.; Fu, L. Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 2004, 104, 561-588.
Wang, Q. G.; Yang, Z. M.; Zhang, X. Q.; Xiao, X. D.; Chang, C. K.; Xu, B. Asupramolecular-hydrogel-encapsulated hemin as an artificial enzyme to mimic peroxidise. Angew. Chem. Int. Ed. 2007, 46, 4285-4289.
Xue, T.; Jiang, S.; Qu, Y. Q.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C. -Y.; Kaner, R.; Huang, Y.; Duan, X. F. Graphene-Supported hemin as a highly active biomimetic oxidation catalyst. Angew. Chem. Int. Ed. 2012, 51, 3822-3825.
Kano, K.; Kitagishi, H.; Kodera, M.; Hirota, S. Dioxygen binding to a simple myoglobin model in aqueous solution. Angew. Chem. Int. Ed. 2005, 44, 435-438.
Kano, K.; Itoh, Y.; Kitagishi, H.; Hayashi, T.; Hirota, S. A supramolecular receptor of diatomic molecules (O2, CO, NO) in aqueous solution. J. Am. Chem. Soc. 2008, 130, 8006-8015.
Watanabe, K.; Kitagishi, H.; Kano, K. Supramolecular iron porphyrin/cyclodextrin dimer complex that mimics the functions of hemoglobin and methemoglobin. Angew. Chem. Int. Ed, 2013, 52, 6894 -6897.
Yu, S. -H.; Cölfen, H.; Hartmann, J.; Antonietti, M. Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers. Adv. Funct. Mater. 2002, 12, 541-545.
Wu, K.; Shi, L. Q.; Zhang, W. Q.; An, Y. L.; Zhang, X.; Li, Z. Y.; Zhu, X. X. Thermoresponsiveness of hybrid micelles from poly(ethylene glycol)-block-poly(4-vinylpyridium) cations and SO42- anions in aqueous solutions. Langmuir 2006, 4, 1474-1477.
Khan, M. O. F.; Austin, S. E.; Chan, C.; Yin, H.; Marks, D.; Vaghjiani, S. N.; Kendrick, H.; Yardley, V.; Croft, S. L.; Douglas, K. T. Use of an additional hydrophobic binding Site, the Z Site, in the rational drug design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammoniumphenothiazines. J. Med. Chem. 2000, 43, 3148-3156.
Chen, G. S.; Jiang, M. Cyclodextrin-based inclusion complexation bridging supramolecular chemistry and macromolecular self-assembly. Chem. Soc. Rev. 2011, 40, 2254-2266.
Venema, F.; Rowan, A. E.; Nolte, R. J. M. Binding of porphyrins in cyclodextrin dimers. J. Am. Chem. Soc. 1996, 118, 257-258.
Eckert, N. A.; Stoian, S.; Smith, J. M.; Bominaar, E. L.; Münck, E.; Holland, P. L. Synthesis, structure, and spectroscopy of an oxodiiron(Ⅱ) complex. J. Am. Chem. Soc. 2005, 127, 9344-9345.
Szejtli, J. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 1998, 98, 1743-1753.
Matile, S.; Berova, N.; Nakanishi, K.; Fleischhauer, J. Structural studies by exciton coupled circular dichroism over a large distance: porphyrin derivatives of steroids, dimeric steroids, and brevetoxin B. J. Am. Chem. Soc, 1996, 118, 5198-5206
Zhao, L. Z.; Ma, R. J.; Li, J. B.; Li, Y.; An, Y. L.; Shi, L. Q. J-and H-aggregates of 5, 10, 15, 20-tetrakis-(4-sulfonatophenyl)-porphyrin and interconversion in PEG-b-P4VP micelles. Biomacromolecules 2008, 9, 2601-2608.
Kano, K.; Kitagishi, H.; Tamura, S.; Yamada, A. Anion binding to a ferric porphyrin complexed with per-O-methylated β-cyclodextrin in aqueous solution. J. Am. Chem. Soc. 2004, 126, 15202-15210.
Kano, K.; Nishiyabu, R.; Asada, T.; Kuroda, Y. Static and dynamic behavior of 2: 1 inclusion complexes of cyclodextrins and charged porphyrins in aqueous organic media. J. Am. Chem. Soc. 2002, 124, 9937-9944.
Kitagishi, H.; Negi, S.; Kiriyama, A.; Honbo, A.; Sugiura, Y.; Kawaguchi, A. T.; Kano, K. A diatomic molecule receptor that removes CO in a living organism. Angew. Chem. Int. Ed. 2010, 49, 1312-1315.
Kano, K.; Kitagishi, H.; Dagallier, C.; Kodera, M.; Matsuo, T.; Hayashi, T.; Hisaeda, Y.; Hirota, S. Iron porphyrin-cyclodextrin supramolecular complex as a functional model of myoglobin in aqueous solution. Inorg. Chem. 2006, 45, 4448-4460.
Geng, Y.; Dalhaimer, P.; Cai, S. S., Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotech. 2007, 2, 249-255.
Gao, X. H.; Cui, Y. Y.; Levenson, R. M.; Chung, L. W. K.; Nie, S. M. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 2004, 22, 969-976.
Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotech. 2007, 2, 47-52.
Prencipe, G.; Tabakman, S. M.; Welsher, K.; Liu, Z.; Goodwin, A. P.; Zhang, L.; Henry, J.; Dai, H. J. PEG branched polymer for functionalization of nanomaterials with ultralong blood circulation. J. Am. Chem. Soc. 2009, 131, 4783-4787.