Journal Home > Volume 8 , Issue 5

SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coating layer, were formed at a preparation temperature of 900 ℃. The initial discharge capacities of the bare SnS and SnS-C composite powders at a current density of 500 mA·g-1 were 695 and 740 mA·h·g-1, respectively. The discharge capacities after 50 cycles and the capacity retentions measured from the second cycle of the bare SnS and SnS-C composite powders were 25 and 433 mA·h·g-1 and 5 and 89%, respectively. The prepared SnS-C composite powders with high reversible capacities and good cycle performance can be used as Na-ion battery anode materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aerosol-assisted rapid synthesis of SnS-C composite microspheres as anode material for Na-ion batteries

Show Author's information Seung Ho ChoiYun Chan Kang( )
Department of Materials Science and EngineeringKorea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713Republic of Korea

Abstract

SnS-C composite powders were prepared through one-pot spray pyrolysis for use as anode materials for Na-ion batteries. C microspheres with uniformly attached cubic-like SnS nanocrystals, which have an amorphous C coating layer, were formed at a preparation temperature of 900 ℃. The initial discharge capacities of the bare SnS and SnS-C composite powders at a current density of 500 mA·g-1 were 695 and 740 mA·h·g-1, respectively. The discharge capacities after 50 cycles and the capacity retentions measured from the second cycle of the bare SnS and SnS-C composite powders were 25 and 433 mA·h·g-1 and 5 and 89%, respectively. The prepared SnS-C composite powders with high reversible capacities and good cycle performance can be used as Na-ion battery anode materials.

Keywords: energy storage, anode material, Tin sulfide, carbon composite, sodium battery

References(48)

1

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947-958.

2

Kim, S. W.; Seo, D. H.; Ma, X. H.; Ceder, G.; Kang, K. Electrode materials for rechargeable sodium-ion batteries: Potential alternatives to current lithium-ion batteries. Adv. Energy Mater. 2012, 2, 710-721.

3

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-González, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.

4

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338-2360.

5

Ellis, B. L.; Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid. St. M. 2012, 16, 168-177.

6

Oszajca, M. F.; Bodnarchuk, M. I.; Kovalenko, M. V. Up and coming precisely engineered colloidal nanoparticles and nanocrystals for Li-ion and Na-ion batteries: Model systems or practical solutions? Chem. Mater. 2014, 26, 5422-5432.

7

Dahbi, M.; Yabuuchi, N.; Kubota, K.; Tokiwa, K.; Komaba, S. Negative electrodes for Na-Ion batteries. Phys. Chem. Chem. Phys. 2014, 16, 15007-15028.

8

Kim, Y.; Ha, K. H.; Oh, S. M.; Lee, K. T. High-capacity anode materials for sodium-ion batteries. Chem. Eur. J. 2014, 20, 11980-11992.

9

Klein, F.; Jache, B.; Bhide, A.; Adelhelm, P. Conversion reactions for sodium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 15876-15887.

10

Su, D. W.; Ahn, H. J.; Wang, G. X. SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem. Commun. 2013, 49, 3131-3133.

11

Jian, Z. L.; Zhao, B.; Liu, P.; Li, F. J.; Zheng, M. B.; Chen, M. W.; Shi, Y.; Zhou, H. S. Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries. Chem. Commun. 2014, 50, 1215-1217.

12

Alcántara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L. NiCo2O4 spinel: First report on atransition metal oxide for the negative electrode of sodium-ion batteries. Chem. Mater. 2002, 14, 2847-2848.

13

Jiang, Y. Z.; Hu, M. J.; Zhang, D.; Yuan, T. Z.; Sun, W. P.; Xu, B.; Yan, M. Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 2014, 5, 60-66.

14

Rahman, M. M.; Glushenkov, A. M.; Ramireddy, T.; Chen, Y.; Electrochemical investigation of sodium reactivity with nanostructured Co3O4 for sodium-ion batteries. Chem. Commun. 2014, 50, 5057-5060.

15

Yuan, S.; Huang, X. L.; Ma, D. L.; Wang, H. G.; Meng, F. Z.; Zhang, X. B. Engraving copper foil to give large-scale binder-free porous CuO arrays for a high-performance sodium-ion battery anode. Adv. Mater. 2014, 26, 2273-2279.

16

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199-208.

17

Wen, J. W.; Zhang, D. W.; Zang, Y.; Sun, X.; Cheng, B.; Ding, C. X.; Yu, Y.; Chen, C. H. Li and Na storage behavior of bowl-like hollow Co3O4 microspheres as an anode material for lithium-ion and sodium-ion batteries. Electrochim. Acta 2014, 132, 193-199.

18

Chen, J. S.; Lou, X. W. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877-1893.

19

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1-62.

20

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903-1911.

21

Zhou, G. M.; Wang, D. W.; Li, L.; Li, N.; Li, F.; Cheng, H. M. Nanosize SnO2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage. Nanoscale 2013, 5, 1576-1582.

22

Ko, Y. N.; Park, S. B.; Kang, Y. C. Design and fabrication of new nanostructured SnO2-carbon composite microspheres for fast and stable lithium storage performance. Small 2014, 10, 3240-3245.

23

Zhou, X. S.; Wan, L. J.; Guo, Y. G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152-2157.

24

Lu, J.; Nan, C. Y.; Li, L. H.; Peng, Q.; Li, Y. D. Flexible SnS nanobelts: Facile synthesis, formation mechanism and application in li-ion batteries. Nano Res. 2013, 6, 55-64.

25

Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319-1326.

26

Cai, J. J.; Li, Z. Z.; Shen, P. K. Porous SnS nanorods/carbon hybrid materials as highly stable and high capacity anode for Li-ion batteries. ACS Appl. Mater. Interfaces 2012, 4, 4093-4098.

27

Choi, S. H.; Kang, Y. C. Synthesis for yolk-shell-structured metal sulfi de powders with excellent electrochemical performances for lithium-ion batteries. Small 2014, 10, 474-478.

28

Vaughn Ⅱ, D. D.; Hentz, O. D.; Chen, S.; Wang, D.; Schaak, R. E. Formation of SnS nanoflowers for lithium ion batteries. Chem. Commun. 2012, 48, 5608-5610.

29

Luo, B.; Fang, Y.; Wang, B.; Zhou, J. S.; Song, H. H.; Zhi, L. J. Two Dimensional graphene-SnS2 hybrids with superior rate capability for lithium ion storage. Energy Environ. Sci. 2012, 5, 5226-5230.

30

Seo, J. -W.; Jang, J. -T.; Park, S. -W.; Kim, C.; Park, B.; Cheon, J. Two-dimensional SnS2 nanoplates with extraordinary high discharge capacity for lithium ion batteries. Adv. Mater. 2008, 20, 4269-4273.

31

Sathish, M.; Mitani, S.; Tomai, T.; Honma, I. Ultrathin SnS2 nanoparticles on graphene nanosheets: Synthesis, characterization, and Li-ion storage applications. J. Phys. Chem. C 2012, 116, 12475−12481.

32

Pei, L. K.; Jin, Q.; Zhu, Z. Q.; Zhao, Q.; Liang, J.; Chen, J. Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three dimensional graphene. Nano Res. 2015, 8, 184−192.

33

Wu, L.; Hu, X. H.; Qian, J. F.; Pei, F.; Wu, F. Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. A Sn-SnS-C nanocomposite as anode host materials for Na-ion batteries. J. Mater. Chem. A 2013, 1, 7181-7184.

34

Zhou, T. F.; Pang, W. K.; Zhang, C. F.; Yang, J. P.; Chen, Z. X.; Liu, H. K.; Guo, Z. P. Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS. ACS Nano 2014, 8, 8323-8333.

35

Qu, B. H.; Ma, C. Z.; Ji, G.; Xu, C. H.; Xu, J.; Meng, Y. S.; Wang, T. H.; Lee, J. Y. Layered SnS2-reduced graphene oxide composite—a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater. 2014, 26, 3854-3859.

36

Dutta, P. K.; Sen, U. K.; Mitra, S. Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode. RSC Adv. 2014, 4, 43155-43159.

37

Xie, X. Q.; Su, D.; Chen, S. Q.; Zhang, J. Q.; Dou, S. X.; Wang, G. X. SnS2 nanoplatelet@graphene nanocomposites as high-capacity anode materials for sodium-ion batteries. Chem. Asian J. 2014, 9, 1611-1617.

38

Prikhodchenko, P. V.; Yu, D. Y. W.; Batabyal, S. K.; Uvarov, V.; Gun, J.; Sladkevich, S.; Mikhaylov, A. A.; Medvedev, A. G.; Lev, O. Nanocrystalline tin disulfide coating of reduced graphene oxide produced by the peroxostannate deposition route for sodium ion battery anodes. J. Mater. Chem. A 2014, 2, 8431-8437.

39

Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications. Chem. Commun. 2012, 48, 3321-3323.

40

Choi, S. H.; Boo, S. J.; Lee, J. -H.; Kang, Y. C. Electrochemical properties of tungsten sulfide-carbon composite microspheres prepared by spray pyrolysis. Sci. Rep. 2014, 4, 5755.

41

Jang, Y. S.; Kang, Y. C. Facile one-pot synthesis of spherical zinc sulfide-carbon nanocomposite powders with superior electrochemical properties as anode materials for Li-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 16437-16441.

42

Yue, G. H.; Lin, Y. D.; Wen, X.; Wang, L. S.; Chen, Y. Z.; Peng, D. L. Synthesis and characterization of the SnS nanowires via chemical vapor deposition. Appl. Phys. A 2012, 106, 87-91.

43

Cai, W.; Hu, J.; Zhao, Y. S.; Yang, H. L.; Wang, J.; Xiang, W. D. Synthesis and characterization of nanoplate-based SnS microflowers via a simple solvothermal process with biomolecule assistance. Adv. Powder Technol. 2012, 23, 850-854.

44

Yu, D. Y. W.; Hoster, H. E.; Batabyal, S. K. Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries. Sci. Rep. 2014, 4, 4562.

45

Ruffo, R.; Fathi, R.; Kim, D. J.; Jung, Y. H.; Mari, C. M.; Kim, D. K. Impedance analysis of Na0.44MnO2 positive electrode for reversible sodium batteries in organic electrolyte. Electrochim. Acta 2013, 108, 575-582.

46

Choi, S. H.; Kang, Y. C. Yolk-shell, hollow, and single-crystalline ZnCo2O4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem 2013, 6, 2111-2116.

47

Su, Q. M.; Du, G. H.; Zhang, J.; Zhong, Y. J.; Xu, B. S.; Yang, Y. H.; Neupane, S.; Li, W. Z. In situ transmission electron microscopy observation of electrochemical sodiation of individual Co9S8-filled carbon nanotubes. ACS Nano 2014, 8, 3620-3627.

48

Choi, S. H.; Kang, Y. C. Fe3O4-decorated hollow graphene balls prepared by spray pyrolysis process for ultrafast and long cycle-life lithium ion batteries. Carbon 2014, 79, 58-66.

File
12274_2014_648_MOESM1_ESM.pdf (886.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 October 2014
Revised: 14 November 2014
Accepted: 19 November 2014
Published: 28 April 2015
Issue date: May 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A2A2A02046367).

Return