Journal Home > Volume 8 , Issue 1

Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Magnetic yolk-shell structured anatase-based microspheres loaded with Au nanoparticles for heterogeneous catalysis

Show Author's information Chun Wang1Junchen Chen1Xinran Zhou1Wei Li1Yong Liu1Qin Yue1Zhaoteng Xue1Yuhui Li1Ahmed A. Elzatahry2,3Yonghui Deng1( )Dongyuan Zhao1
Department of ChemistryLaboratory of Advanced MaterialsState Key Laboratory of Molecular Engineering of Polymersand Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsFudan UniversityShanghai200433China
Department of ChemistryCollege of ScienceKing Saud UniversityRiyadh11451Saudi Arabia
Polymer Materials Research DepartmentAdvanced Technology and New Materials Research InstituteCity for Scientific Research and Technology ApplicationsNew Borg El-Arab CityAlexandria21934Egypt

Abstract

Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.

Keywords: titania, gold nanoparticles, heterogeneous catalysis, magnetic microspheres, yolk-shell structure

References(50)

1

Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.

2

Tang, F. Q.; Li, L. L.; Chen, D. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery. Adv. Mater. 2012, 24, 1504–1534.

3

Chaudhuri, R. G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

4

Kamata, K.; Lu, Y.; Xia, Y. N. Synthesis and characterization of monodispersed core–shell spherical colloids with movable cores. J. Am. Chem. Soc. 2003, 125, 2384–2385.

5

Zhou, W. D.; Yu, Y. C.; Chen, H.; DiSalvo, F. J.; Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 2013, 135, 16736–16743.

6

Zhang, W. -M.; Hu, J. -S.; Guo, Y. -G.; Zheng, S. -F.; Zhong, L. -S.; Song, W. -G.; Wan, L. -J. Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv. Mater. 2008, 20, 1160–1165.

7

Chen, Z.; Cui, Z. -M.; Niu, F.; Jiang, L.; Song, W. -G. Pd nanoparticles in silica hollow spheres with mesoporous walls: A nanoreactor with extremely high activity. Chem. Commun. 2010, 46, 6524–6526.

8

Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature- stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224–8227.

9

Guan, B. Y.; Wang, T.; Zeng, S, J.; Wang, X.; An, D.; Wang, D. M.; Cao, Y.; Ma, D. X.; Liu, Y. L.; Huo, Q. S. A versatile cooperative template-directed coating method to synthesize hollow and yolk–shell mesoporous zirconium titanium oxide nanospheres as catalytic reactors. Nano Res. 2014, 7, 246–262.

10

Liu, H. Y.; Chen, D.; Li, L. L.; Liu, T. L.; Tan, L. F.; Wu, X. L.; Tang, F. Q. Multifunctional gold nanoshells on silica nanorattles: A platform for the combination of photothermal therapy and chemotherapy with low systemic toxicity. Angew. Chem. Int. Ed. 2011, 50, 891–895.

11

Liu, J.; Qiao, S. Z.; Hartono, S. B.; Lu, G. Q. Monodisperse yolk–shell nanoparticles with a hierarchical porous structure for delivery vehicles and nanoreactors. Angew. Chem. Int. Ed. 2010, 49, 4981–4985.

12

Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 2010, 4, 529–539.

13

Demirörs, A. F.; van Blaaderen, A.; Imhof, A. A general method to coat colloidal particles with titania. Langmuir 2010, 26, 9297–9303.

14

Deng, Y. H.; Tüysüz, H.; Henzie, J.; Yang, P. D. Templated synthesis of shape-controlled, ordered TiO2 cage structures. Small 2011, 7, 2037–2040.

15

Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk–shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

16

Cao, L.; Chen, D. H.; Caruso, R. A. Surface-metastable phase-initiated seeding and Ostwald ripening: A facile fluorine-free process towards spherical fluffy core/shell, yolk/shell, and hollow anatase nanostructures. Angew. Chem. Int. Ed. 2013, 52, 10986–10991.

17

Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics- controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.

18

Joo, J. B.; Zhang, Q.; Lee, I.; Dahl, M.; Zaera, F.; Yin, Y. D. Mesoporous anatase titania hollow nanostructures through silica-protected calcination. Adv. Funct. Mater. 2012, 22, 166–174.

19

Zhang, Q.; Lima, D. Q.; Lee, I.; Zaera, F.; Chi, M. F.; Yin, Y. D. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration. Angew. Chem. Int. Ed. 2011, 50, 7088–7092.

20

Li, W.; Wang, F.; Feng, S. S.; Wang, J. X.; Sun, Z. K.; Li, B.; Li, Y. H.; Yang, J. P.; Elzatahry, A. A.; Xia, Y. Y.; Zhao, D. Y. Sol–gel design strategy for ultradispersed TiO2 nanoparticles on graphene for high-performance lithium ion batteries. J. Am. Chem. Soc. 2013, 135, 18300–18303.

21

Sun, Z. Q.; Kim, J. H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y. -M.; Dou, S. X. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. J. Am. Chem. Soc. 2011, 133, 19314–19317.

22

Sun, Z. K.; Yue, Q.; Liu, Y.; Wei, J.; Li, B.; Kaliaguine, S.; Deng, Y. H.; Wu, Z. X.; Zhao, D. Y. Rational synthesis of super-paramagnetic core–shell structured mesoporous microspheres with large pore sizes. J. Mater. Chem. A 2014, 2, 18322–18328.

23

Deng, Y. H.; Cai, Y.; Sun, Z. K.; Zhao, D. Y. Magnetically responsive ordered mesoporous materials: A burgeoning family of functional composite nanomaterials. Chem. Phys. Lett. 2011, 510, 1–13.

24

Ma, W. -F.; Zhang, Y.; Li, L. -L.; You, L. -J.; Zhang, P.; Zhang, Y. -T.; Li, J. -M.; Yu, M.; Guo, J.; Lu, H. -J.; Wang, C. -C. Tailor-made magnetic Fe3O4@mTiO2 microspheres with a tunable mesoporous anatase shell for highly selective and effective enrichment of phosphopeptides. ACS Nano 2012, 6, 3179–3188.

25

Reddy, L. H.; Arias, J. L.; Nicolas, J.; Couvreur, P. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. Rev. 2012, 112, 5818–5878.

26

Chen, J. S.; Chen, C. P.; Liu, J.; Xu, R.; Qiao, S. Z.; Lou, X. W. Ellipsoidal hollow nanostructures assembled from anatase TiO2 nanosheets as a magnetically separable photocatalyst. Chem. Commun. 2011, 47, 2631–2633.

27

Shylesh, S.; Schünemann, V.; Thiel, W. R. Magnetically separable nanocatalysts: Bridges between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. 2010, 49, 3428–3459.

28

Wang, M. H.; Sun Z. K.; Yue, Q.; Yang, J.; Wang, X. Q. Deng, Y. H.; Yu, C. Z.; Zhao, D. Y. An interface-directed co-assembly approach to synthesize uniform large-pore mesoporous silica spheres. J. Am. Chem. Soc. 2014, 136, 1884–1892.

29

Lou, X. W.; Archer, L. A. A general route to nonspherical anatase TiO2 hollow colloids and magnetic multifunctional particles. Adv. Mater. 2008, 20, 1853–1858.

30

Sun, Z. K.; Yang, J. P.; Wang, J. X.; Li, W.; Kaliaguine, S.; Hou, X. F.; Deng, Y. H.; Zhao, D. Y. A versatile designed synthesis of magnetically separable nano-catalysts with well- defined core–shell nanostructures. J. Mater. Chem. A 2014, 2, 6071–6074.

31

Liu, J.; Sun, Z. K.; Deng, Y. H.; Zou, Y.; Li, C. Y.; Guo, X. H.; Xiong, L. Q.; Gao, Y.; Li, F. Y.; Zhao, D. Y. Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angew. Chem. Int. Ed. 2009, 48, 5875–5879.

32

Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. J. Am. Chem. Soc. 2010, 132, 8466–8473.

33

Stöber, W.; Fink, A.; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62–69.

34

Deng, Y. H.; Qi, D. W.; Deng, C. H.; Zhang, X. M.; Zhao, D. Y. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins J. Am. Chem. Soc. 2008, 130, 28–29.

35

Wang, J. X.; Li, W.; Wang, F.; Xia, Y. Y.; Asiri, A. M.; Zhao, D. Y. Controllable synthesis of SnO2@C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries. Nanoscale 2014, 6, 3217–3222.

36

Chen, J. C.; Xue, Z. T.; Feng, S. S.; Tu, B.; Zhao, D. Y. Synthesis of mesoporous silica hollow nanospheres with multiple gold cores and catalytic activity. J. Colloid Interface Sci. 2014, 429, 62–67.

37

Fang, X. L.; Liu, S. J.; Zang, J.; Xu, C. F.; Zheng, M. -S.; Dong, Q. -F.; Sun, D. H.; Zheng, N. F. Precisely controlled resorcinol–formaldehyde resin coating for fabricating core–shell, hollow, and yolk–shell carbon nanostructures. Nanoscale 2013, 5, 6908–6916.

38

Zhang, X. -B.; Tong, H. -W.; Liu, S. -M.; Yong, G. -P.; Guan, Y. -F. An improved Stöber method towards uniform and monodisperse Fe3O4@C nanospheres. J. Mater. Chem. A 2013, 1, 7488–7493.

39

Li, N.; Zhang, Q.; Liu, J.; Joo, J.; Lee, A.; Gan, Y.; Yin, Y. D. Sol–gel coating of inorganic nanostructures with resorcinol- formaldehyde resin. Chem. Commun. 2013, 49, 5135–5137.

40

Fuertes, A. B.; Valle-Vigόn, P.; Sevilla, M. One-step synthesis of silica@resorcinol–formaldehyde spheres and their application for the fabrication of polymer and carbon capsules. Chem. Commun. 2012, 48, 6124–6126.

41

Zhang, J. Y.; Deng, Y. H.; Gu, D.; Wang, S. T.; She, L.; Che, R. C.; Wang, Z. -S.; Tu, B.; Xie, S. H.; Zhao, D. Y. Ligand- assisted assembly approach to synthesize large-pore ordered mesoporous titania with thermally stable and crystalline framework. Adv. Energy Mater. 2011, 1, 241–248.

42

Lee, J.; Orilall, M. C.; Warren, S. C.; Kamperman, M.; Disalvo, F. J.; Wiesner, U. Direct access to thermally stable and highly crystalline mesoporous transition-metal oxides with uniform pores. Nat. Mater. 2008, 7, 222–228.

43

Zhu, H. G.; Liang, C. D.; Yan, W. F.; Overbury, S. H.; Dai, S. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique. J. Phys. Chem. B 2006, 110, 10842–10848.

44

Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core–shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

45

Li, Y. H.; Wei, J.; Luo, W.; Wang, C.; Li, W.; Feng, S. S.; Yue, Q.; Wang, M. H.; Elzatahry, A. A.; Deng, Y. H.; Zhao, D. Y. Tricomponent coassembly approach to synthesize ordered mesoporous carbon/silica nanocomposites and their derivative mesoporous silicas with dual porosities. Chem. Mater. 2014, 26, 2438–2444.

46

Wang, M. H.; Wang, X. Q.; Yue, Q.; Zhang, Y.; Wang, C.; Chen, J.; Cai, H. Q.; Lu, H. L.; Elzatahry, A. A.; Zhao, D. Y.; Deng, Y. H. Templated fabrication of core-shell magnetic mesoporous carbon microspheres in 3-dimensional ordered macroporous silicas. Chem. Mater. 2014, 26, 3316–3321.

47

Wang, C.; Wei, J.; Yue, Q.; Luo, W.; Li, Y. H.; Wang, M. H.; Deng, Y. H.; Zhao, D. Y. A shear stress regulated assembly route to silica nanotubes and their closely packed hollow mesostructures. Angew. Chem. Int. Ed. 2013, 52, 11603–11606.

48

Wei, J.; Yue, Q.; Sun, Z. K.; Deng, Y. H.; Zhao, D. Y. Synthesis of dual-mesoporous silica using non-ionic diblock copolymer and cationic surfactant as co-templates. Angew. Chem. Int. Ed. 2012, 51, 6149–6153.

49

Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Shape- dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893.

50

Kumar, S. B.; Mirajkar, S. P.; Pais, G. C. G.; Kumar, P.; Kumar, R. Epoxidation of styrene over a titanium silicate molecular sieve TS-1 using dilute H2O2 as oxidizing agent. J. Catal. 1995, 156, 163–166.

File
12274_2014_647_MOESM1_ESM.pdf (5.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 September 2014
Revised: 10 November 2014
Accepted: 19 November 2014
Published: 23 December 2014
Issue date: January 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program) (Nos. 2013CB934104 and 2012CB224805), the National Natural Science Foundation of China (Nos. 51372041 and 51422202), the specialized research fund for the doctoral program of higher education of China (No. 20120071110007), the innovation program of Shanghai Municipal Education Commission (No. 13ZZ004), State Key Laboratory of Pollution Control and Resource Reuse Foundation (No. PCRRF14017), and the Program for New Century Excellent Talents in University (No. NCET-12-0123). We extend our appreciation to the Deanship of Scientific Research at King Saud University for funding the work through the research group project No. RGP-227.

Return