Journal Home > Volume 8 , Issue 5

The use of new three-dimensional (3D) porous graphene-metal oxide composite microspheres as an anode material for Li-ion batteries (LIBs) is first introduced here. 3D graphene microspheres are aggregates of individual hollow graphene nanospheres composed of graphene sheets. Metal oxide nanocrystals are uniformly distributed over the graphene surface of the microspheres. The 3D porous graphene-SnO2 microspheres are selected as the first target material for investigation because of their superior electrochemical properties. The 3D porous graphene-SnO2 and graphene microspheres and bare SnO2 powders deliver discharge capacities of 1, 009, 196, and 52 mAh·g-1, respectively, after 500 cycles at a current density of 2 A·g-1. The 3D porous graphene-SnO2 microspheres exhibit uniquely low charge transfer resistances and high Li-ion diffusivities before and after cycling.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Three-dimensional porous graphene-metal oxide composite microspheres: Preparation and application in Li-ion batteries

Show Author's information Seung Ho Choi1Jung-Kul Lee2( )Yun Chan Kang1( )
Department of Materials Science and EngineeringKorea University, Anam-Dong, Seongbuk-Gu, Seoul, 136-713Republic of Korea
Department of Chemical EngineeringKonkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul, 143-701Republic of Korea

Abstract

The use of new three-dimensional (3D) porous graphene-metal oxide composite microspheres as an anode material for Li-ion batteries (LIBs) is first introduced here. 3D graphene microspheres are aggregates of individual hollow graphene nanospheres composed of graphene sheets. Metal oxide nanocrystals are uniformly distributed over the graphene surface of the microspheres. The 3D porous graphene-SnO2 microspheres are selected as the first target material for investigation because of their superior electrochemical properties. The 3D porous graphene-SnO2 and graphene microspheres and bare SnO2 powders deliver discharge capacities of 1, 009, 196, and 52 mAh·g-1, respectively, after 500 cycles at a current density of 2 A·g-1. The 3D porous graphene-SnO2 microspheres exhibit uniquely low charge transfer resistances and high Li-ion diffusivities before and after cycling.

Keywords: graphene, nanostructures, batteries, metal oxide, electrode material

References(64)

1

Zhu, Y. W.; Murali, S.; Cai, W. W.; Li, X. S.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 2010, 22, 3906-3924.

2

Huang, X.; Zeng, Z. Y.; Fan, Z. X.; Liu, J. Q.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979-6004.

3

Guo, S. J.; Dong, S. J. Graphene nanosheet: Synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev. 2011, 40, 2644-2672.

4

Liu, Y. X.; Dong, X. C.; Chen, P. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 2012, 41, 2283-2307.

5

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

6

Wu, Z. -S.; Zhou, G. M.; Yin, L. -C.; Ren, W. -C.; Li, F.; Cheng, H. -M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107-131.

7

Huang, X.; Tan, C. L.; Yin, Z. Y.; Zhang, H. 25th anniversary article: hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 2014, 26, 2185-2204.

8

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1-62.

9

Leng, K.; Zhang, F.; Zhang, L.; Zhang, T. F.; Wu, Y. P.; Lu, Y. H.; Huang, Y.; Chen, Y. S. Graphene-based Li-ion hybrid supercapacitors with ultrahigh performance. Nano Res. 2013, 6, 581-592.

10

Huang, X. D.; Qian, K.; Yang, J.; Zhang, J.; Li, L.; Yu, C. Z.; Zhao, D. Y. Functional nanoporous graphene foams with controlled pore sizes. Adv. Mater. 2012, 24, 4419-4423.

11

Luo, J. Y.; Jang, H. D.; Sun, T.; Xiao, L.; He, Z.; Katsoulidis, A. P.; Kanatzidis, M. G.; Gibson, J. M.; Huang, J. X. Compression and aggregation-resistant particles of crumpled soft sheets. ACS Nano 2011, 5, 8943-8949.

12

Mao, S.; Wen, Z. H.; Kim, H. J.; Lu, G. H.; Hurley, P.; Chen, J. H. A general approach to one-pot fabrication of crumpled graphene-based nanohybrids for energy applications. ACS Nano 2012, 6, 7505-7513.

13

Chen, Y. T.; Guo, F.; Jachak, A.; Kim, S. -P.; Datta, D.; Liu, J. Y.; Kulaots, I.; Vaslet, C.; Jang, H. D.; Huang, J. X. et al. Aerosol synthesis of cargo-filled graphene nanosacks. Nano Lett. 2012, 12, 1996-2002.

14

Choi, B. G.; Yang, M. H.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020-4028.

15

Chen, Z. P.; Ren, W. C.; Gao, L. B.; Liu, B. L.; Pei, S. F.; Cheng, H. -M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011, 10, 424-428.

16

Li, C.; Shi, G. Q. Three-dimensional graphene architectures. Nanoscale 2012, 4, 5549-5563.

17

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163-3168.

18

Yoon, J. -C.; Lee, J. -S.; Kim, S. -I.; Kim, K. -H.; Jang, J. -H. Three-dimensional graphene nano-networks with high quality and mass production capability via precursor-assisted chemical vapor deposition. Sci. Rep. 2013, 3, 1788.

19

Xie, X.; Yu, G. H.; Liu, N.; Bao, Z. N.; Criddle, C. S.; Cui, Y. Graphene-sponges as high-performance low-cost anodes for microbial fuel cells. Energy Environ. Sci. 2012, 5, 6862-6866.

20

Sohn, K.; Na, Y. J.; Chang, H.; Roh, K. M.; Jang, H. D.; Huang, J. X. Oil absorbing graphene capsules by capillary molding. Chem. Commun. 2012, 8, 5968-5970.

21

He, Y. M.; Chen, W. J.; Li, X. D.; Zhang, Z. X.; Fu, J. C.; Zhao, C. H.; Xie, E. Q. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 2013, 7, 174-182.

22

Cao, X. H.; Yin, Z. Y.; Zhang, H. Three-dimensional graphene materials: Preparation, structures and application in supercapacitors. Energy Environ. Sci. 2014, 7, 1850-1865.

23

Dong, X. C.; Cao, Y. F.; Wang, J.; Chan-Park, M. B.; Wang, L. H.; Huang, W.; Chen, P. Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2012, 2, 4364-4369.

24

Wang, X. B.; Zhang, Y. J.; Zhi, C. Y.; Wang, X.; Tang, D. M.; Xu, Y. B.; Weng, Q. H.; Jiang, X. F.; Mitome, M.; Golberg, D. et al. Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Comm. 2013, 4, 2905.

25

Xu, Z. W.; Li, Z.; Holt, C. M. B.; Tan, X. H.; Wang, H. L.; Amirkhiz, B. S.; Stephenson, T.; Mitlin, D. Electrochemical supercapacitor electrodes from sponge-like graphene nanoarchitectures with ultrahigh power density. J. Phys. Chem. Lett. 2012, 3, 2928-2933.

26

Wei, W.; Yang, S. B.; Zhou, H. X.; Lieberwirth, I.; Feng, X. L.; Müllen, K. 3D graphene foams cross-linked with pre-encapsulated Fe3O4 nanospheres for enhanced lithium storage. Adv. Mater. 2013, 25, 2909-2914.

27

Luo, J. S.; Liu, J. L.; Zeng, Z. Y.; Ng, C. F.; Ma, L. J.; Zhang, H.; Lin, J. Y.; Shen, Z. X.; Fan, H. J. Three-dimensional graphene foam supported Fe3O4 lithium battery anodes with long cycle life and high rate capability. Nano Lett. 2013, 13, 6136-6143.

28

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Rui, X. H.; Yan, Q. Y.; Kong, J.; Zhang, H. Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 2013, 9, 3433-3438.

29

Huang, X.; Yu, H.; Chen, J.; Lu, Z. Y.; Yazami, R.; Hng, H. H. Ultrahigh rate capabilities of lithium-ion batteries from 3D ordered hierarchically porous electrodes with entrapped active nanoparticles configuration. Adv. Mater. 2014, 26, 1296-1303.

30

Liu, X. W.; Cheng, J. X.; Li, W. H.; Zhong, X. W.; Yang, Z. Z.; Gu, L.; Yu, Y. Superior lithium storage in a 3D macroporous graphene framework/SnO2 nanocomposite. Nanoscale 2014, 6, 7817-7822.

31

Zhu, J. X.; Yang, D.; Rui, X. H.; Sim, D. H.; Yu, H.; Hoster, H. E.; Ajayan, P. M.; Yan, Q. Y. Facile preparation of ordered porous graphene-metal oxide@C binder-free electrodes with high Li storage performance. Small 2013, 9, 3390-3397.

32

Cao, X. H.; Zheng, B.; Rui, X. H.; Shi, W. H.; Yan, Q. Y.; Zhang, H. Metal oxide-coated three-dimensional graphene prepared by the use of metal-organic frameworks as precursors. Angew. Chem. Int. Ed. 2014, 53, 1404-1409.

33

Ji, J. Y.; Ji, H. X.; Zhang, L. L.; Zhao, X.; Bai, X.; Fan, X. B.; Zhang, F. B.; Ruoff, R. S. Graphene-encapsulated Si on ultrathin-graphite foam as anode for high capacity lithium-ion batteries. Adv. Mater. 2013, 25, 4673-4677.

34

Li, N.; Chen, Z. P.; Ren, W. C.; Li, F.; Cheng, H. -M. Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 17360-17365.

35

Gong, Y. J.; Yang, S. B.; Liu, Z.; Ma, L. L.; Vajtai, R.; Ajayan, P. M. Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater. 2013, 25, 3979-3984.

36

Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 2011, 23, 5679-5683.

37

Huang, X. D.; Sun, B.; Chen, S. Q.; Wang, G. X. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors. Chem. -Asian J. 2014, 9, 206-211.

38

Xiao, L.; Wu, D. Q.; Han, S.; Huang, Y. S.; Li, S.; He, M. Z.; Zhang, F.; Feng, X. L. Self-assembled Fe2O3/graphene aerogel with high lithium storage performance. ACS Appl. Mater. Interfaces 2013, 5, 3764-3769.

39

Nardecchia, S.; Carriazo, D.; Ferrer, M. L.; Gutiérrez, M. C.; del Monte, F. Three dimensional macroporous architectures and aerogels built of carbon nanotubes and/or graphene: Synthesis and applications. Chem. Soc. Rev. 2013, 42, 794-830.

40

Choi, S. H.; Kang, Y. C. Crumpled graphene-molybdenum oxide composite powders: Preparation and application in lithium-ion batteries. ChemSusChem 2014, 7, 523-528.

41

Zhang, T. Y.; Li, X. Q.; Kang, S. Z.; Qin, L. X.; Yan, W. F.; Mu, J. Facile assembly and properties of polystyrene microsphere/reduced graphene oxide/Ag composite. J. Colloid Interface Sci. 2013, 402, 279-283.

42

Zhang, W. L.; Liu, Y. D.; Choi, H. J. Graphene oxide coated core-shell structured polystyrene microspheres and their electrorheological characteristics under applied electric field. J. Mater. Chem. 2011, 21, 6916-6921.

43

Zhou, X. S.; Wan, L. -J.; Guo, Y. -G. Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 2013, 25, 2152-2157.

44

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.

45

Kim, T. Y.; Kang, H. C.; Tung, T. T.; Lee, J. D.; Kim, H. K.; Yang, W. S.; Yoon, H. G.; Suh, K. S. Ionic liquid-assisted microwave reduction of graphite oxide for supercapacitors. RSC Adv. 2012, 2, 8808-8812.

46

Seema, H.; Kemp, K. C.; Chandra, V.; Kim, K. S. Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 2012, 23, 355705.

47

Beidaghi, M.; Wang, C. L. Micro-supercapacitors based on interdigital electrodes of reduced graphene oxide and carbon nanotube composites with ultrahigh power handling performance. Adv. Funct. Mater. 2012, 22, 4501-4510.

48

Li, Y. M.; Lv, X. J.; Lu, J.; Li, J. H. Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J. Phys. Chem. C 2010, 114, 21770-21774.

49

Li, L.; Kovalchuk, A.; Tour, J. M. SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res. 2014, 7, 1319-1326.

50

Lin, J.; Peng, Z. W.; Xiang, C. S.; Ruan, G. D.; Yan, Z.; Natelson, D.; Tour, J. M. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium ion batteries. ACS Nano 2013, 7, 6001-6006.

51

Zhang, C. F.; Peng, X.; Guo, Z. P.; Cai, C. B.; Chen, Z. X.; Wexler, D.; Li, S. A.; Liu, H. K. Carbon-coated SnO2/graphene nanosheets as highly reversible anode materials for lithium ion batteries. Carbon 2012, 50, 1897-1903.

52

Huang, Y. S.; Wu, D. Q.; Wang, J. Z.; Han, S.; Lv, L.; Zhang, F.; Feng, X. L. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage. Small 2014, 10, 2226-2232.

53

Lee, C. W.; Seo, S. -D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. -W.; Hong, K. S. Heteroepitaxial growth of ZnO nanosheet bands on ZnCo2O4 submicron rods toward high-performance Li ion battery electrodes. Nano Res. 2013, 6, 348-355.

54

Lee, C. W.; Seo, S. D.; Kim, D. W.; Park, S.; Jin, K.; Kim, D. W.; Hong, K. S. Heteroepitaxial Growth of ZnO Nanosheet Bands on ZnCo2O4 Submicron Rods Toward High-Performance Li Ion Battery Electrodes. Nano Res. 2013, 6, 348-355.

55

Xiang, H. F.; Li, Z. D.; Xie, K.; Jiang, J. Z.; Chen, J. J.; Lian, P. C.; Wu, J. S.; Yu, Y.; Wang, H. H. Graphene sheets as anode materials for Li-ion batteries: Preparation, structure, electrochemical properties and mechanism for lithium storage. RSC Adv. 2012, 2, 6792-6799.

56

Yang, J.; Liao, Q. C.; Zhou, X. Y.; Liu, X. J.; Tang, J. J. Efficient synthesis of graphene-based powder via in situ spray pyrolysis and its application in lithium ion batteries. RSC Adv. 2013, 3, 16449-16455.

57

Li, S. L.; Li, A. H.; Zhang, R. R.; He, Y. Y.; Zhai, Y. J.; Xu, L. Q. Hierarchical porous metal ferrite ball-in-ball hollow spheres: General synthesis, formation mechanism, and high performance as anode materials for Li-ion batteries. Nano Res. 2014, 7, 1116-1127.

58

Choi, S. H.; Kang, Y. C. Using simple spray pyrolysis to prepare yolk-shell-structured ZnO-Mn3O4 systems with the optimum composition for superior electrochemical properties. Chem. -Eur. J. 2014, 20, 3014-3018.

59

Wang, D. N.; Yang, J. L.; Li, X. F.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. -K.; Sun, X. L. Layer by layer assembly of sandwiched graphene/SnO2 nanorod/carbon nanostructures with ultrahigh lithium ion storage properties. Energy Environ. Sci. 2013, 6, 2900-2906.

60

Wang, D. N.; Li, X. F.; Wang, J. J.; Yang, J. L.; Geng, D. S.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. Defect-rich crystalline SnO2 immobilized on graphene nanosheets with enhanced cycle performance for Li ion batteries. J. Phys. Chem. C 2012, 116, 22149-22156.

61

Zhou, G. M.; Wang, D. -W.; Yin, L. -C.; Li, N.; Li, F.; Cheng, H. -M. Oxygen bridges between NiO nanosheets and graphene for improvement of lithium storage. ACS Nano 2012, 6, 3214-3223.

62

Choi, S. H.; Kang, Y. C. Yolk-shell, hollow, and single-crystalline ZnCo2O4 powders: Preparation using a simple one-pot process and application in lithium-ion batteries. ChemSusChem 2013, 6, 2111-2116.

63

Park, M. -S.; Kang, Y. -M.; Wang, G. -X.; Dou, S. -X.; Liu, H. -K. The effect of morphological modification on the electrochemical properties of SnO2 nanomaterials. Adv. Funct. Mater. 2008, 18, 455-461.

64

Ko, Y. N.; Park, S. B.; Jung, K. Y.; Kang, Y. C. One-pot facile synthesis of ant-cave-structured metal oxide−carbon microballs by continuous process for use as anode materials in Li-ion batteries. Nano Lett. 2013, 13, 5462-5466.

File
12274_2014_646_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 September 2014
Revised: 03 November 2014
Accepted: 19 November 2014
Published: 27 January 2015
Issue date: May 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A2A2A02046367). This work was supported by the Energy Efficiency & Resources Core Technology Program of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (201320200000420).

Return