Journal Home > Volume 8 , Issue 1

Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.


menu
Abstract
Full text
Outline
About this article

Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials

Show Author's information Xiaogang Yang1( )Rui Liu2,3Yumin He3James Thorne3Zhi Zheng1Dunwei Wang3( )
Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province and Institute of Surface Micro and Nano MaterialsXuchang UniversityHenan461000China
Division of Chemistry and Chemical EngineeringJoint Center for Artificial PhotosynthesisCalifornia Institute of TechnologyPasadenaCA91125USA
Department of ChemistryBoston CollegeMerkert Chemistry Center2609 Beacon St.Chestnut HillMA02467USA

Abstract

Sustainable development and continued prosperity of humanity hinge on the availability of renewable energy sources on a terawatts scale. In the long run, solar energy is the only source that can meet this daunting demand. Widespread utilization of solar energy faces challenges as a result of its diffusive (hence low energy density) and intermittent nature. How to effectively harvest, concentrate, store and redistribute solar energy constitutes a fundamental challenge that the scientific community needs to address. Photoelectrochemical (PEC) water splitting is a process that can directly convert solar energy into chemical energy and store it in chemical bonds, by producing hydrogen as a clean fuel source. It has received significant research attention lately. Here we provide a concise review of the key issues encountered in carrying out PEC water splitting. Our focus is on the balance of considerations such as stability, earth abundance, and efficiency. Particular attention is paid to the combination of photoelectrodes with electrocatalysts, especially on the interfaces between different components.

Keywords: efficiency, stability, interface, photoelectrochemical water splitting, earth abundance

References(145)

1
BP Statistical Review of World Energy. BP Plc, 2014.
2

Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767-776.

3

Liu, C.; Dasgupta, N. P.; Yang, P. D. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 2013, 26, 415-422.

4
Raven, P. H.; Evert, R. F.; Eichhorn, S. E. Biology of Plants; W. H. Freeman: New York, 2005.
5

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

6

Boddy, P. J. Oxygen evolution on semiconducting TiO2. J. Electrochem. Soc. 1968, 115, 199-203.

7

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37-38.

8

Aharon-Shalom, E.; Heller, A. Efficient p-lnP(Rh-H alloy) and p-lnP(Re-H alloy) hydrogen evolving photocathodes. J. Electrochem. Soc. 1982, 129, 2865-2866.

9

Licht, S.; Wang, B.; Mukerji, S.; Soga, T.; Umeno, M.; Tributsch, H. Efficient solar water splitting, exemplified by RuO2-catalyzed AlGaAs/Si photoelectrolysis. J. Phys. Chem. B 2000, 104, 8920-8924.

10

Kenney, M. J.; Gong, M.; Li, Y. G.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H. J. High-performance silicon photoanodes passivated with ultrathin nickel films for water oxidation. Science 2013, 342, 836-840.

11

Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344, 1005-1009.

12
van de Krol, R. Principles of photoelectrochemical cells. In Photoelectrochemical Hydrogen Production. van de Krol, R.; Grätzel, M., Eds.; Springer US: New York, 2012; pp 13-67.https://doi.org/10.1007/978-1-4614-1380-6_2
DOI
13

Andrade, L.; Lopes, T.; Ribeiro, H. A.; Mendes, A. Transient phenomenological modeling of photoelectrochemical cells for water splitting-Application to undoped hematite electrodes. Int. J. Hydrogen Energy 2011, 36, 175-188.

14

Hu, S.; Xiang, C. X.; Haussener, S.; Berger, A. D.; Lewis, N. S. An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems. Energy Environ. Sci. 2013, 6, 2984-2993.

15

Haussener, S.; Xiang, C. X.; Spurgeon, J. M.; Ardo, S.; Lewis, N. S.; Weber, A. Z. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ. Sci. 2012, 5, 9922-9935.

16

Woodhouse, M.; Parkinson, B. A. Combinatorial approaches for the identification and optimization of oxide semiconductors for efficient solar photoelectrolysis. Chem. Soc. Rev. 2009, 38, 197-210.

17

Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: London, 2003.

18

Sathre, R.; Scown, C. D.; Morrow, W. R.; Stevens, J. C.; Sharp, I. D.; Ager, J. W.; Walczak, K.; Houle, F. A.; Greenblatt, J. B. Life-cycle net energy assessment of large-scale hydrogen production via photoelectrochemical water splitting. Energy Environ. Sci. 2014, 7, 3264-3278.

19

Pinaud, B. A.; Benck, J. D.; Seitz, L. C.; Forman, A. J.; Chen, Z. B.; Deutsch, T. G.; James, B. D.; Baum, K. N.; Baum, G. N.; Ardo, S. et al. Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry. Energy Environ. Sci. 2013, 6, 1983-2002.

20

Bolton, J. R.; Strickler, S. J.; Connolly, J. S. Limiting and realizable efficiencies of solar photolysis of water. Nature 1985, 316, 495-500.

21

Seitz, L. C.; Chen, Z. B.; Forman, A. J.; Pinaud, B. A.; Benck, J. D.; Jaramillo, T. F. Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. ChemSusChem 2014, 7, 1372-1385.

22

Cho, I. S.; Chen, Z. B.; Forman, A. J.; Kim, D. R.; Rao, P. M.; Jaramillo, T. F.; Zheng, X. L. Branched TiO2 nanorods for photoelectrochemical hydrogen production. Nano Lett. 2011, 11, 4978-4984.

23

Varghese, O. K.; Grimes, C. A. Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells: A review with examples using titania nanotube array photoanodes. Sol. Energy Mater. Sol. Cells 2008, 92, 374-384.

24

Seabold, J. A.; Choi, K. -S. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 2186-2192.

25

Zhong, D. K.; Gamelin, D. R. Photoelectrochemical water oxidation by cobalt catalyst ("Co-Pi")/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 2010, 132, 4202-4207.

26

Zhong, D. K.; Choi, S.; Gamelin, D. R. Near-complete suppression of surface recombination in solar photoelectrolysis by "Co-Pi" catalyst-modified W: BiVO4. J. Am. Chem. Soc. 2011, 133, 18370-18377.

27

Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. The role of cobalt phosphate in enhancing the photocatalytic activity of α-Fe2O3 toward water oxidation. J. Am. Chem. Soc. 2011, 133, 14868-14871.

28

Gamelin, D. R. Water splitting: Catalyst or spectator? Nat. Chem. 2012, 4, 965-967.

29

Le Formal, F.; Tétreault, N.; Cornuz, M.; Moehl, T.; Grätzel, M.; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2011, 2, 737-743.

30

Hisatomi, T.; Le Formal, F.; Cornuz, M.; Brillet, J.; Tétreault, N.; Sivula, K.; Grätzel, M. Cathodic shift in onset potential of solar oxygen evolution on hematite by 13-group oxide overlayers. Energy Environ. Sci. 2011, 4, 2512-2515.

31

Yang, X. G.; Liu, R.; Du, C.; Dai, P. C.; Zheng, Z.; Wang, D. W. Improving hematite-based photoelectrochemical water splitting with ultrathin TiO2 by atomic layer deposition. ACS Appl. Mater. Interfaces 2014, 6, 12005-12011.

32

Liao, M. J.; Feng, J. Y.; Luo, W. J.; Wang, Z. Q.; Zhang, J. Y.; Li, Z. S.; Yu, T.; Zou, Z. G. Co3O4 nanoparticles as robust water oxidation catalysts towards remarkably enhanced photostability of a Ta3N5 photoanode. Adv. Funct. Mater. 2012, 22, 3066-3074.

33

Lin, F. D.; Boettcher, S. W. Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nat. Mater. 2014, 13, 81-86.

34

Mills, T. J.; Lin, F. D.; Boettcher, S. W. Theory and simulations of electrocatalyst-coated semiconductor electrodes for solar water splitting. Phys. Rev. Lett. 2014, 112, 148304.

35

Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth abundant catalysts. Science 2011, 334, 645-648.

36

Vesborg, P. C. K.; Jaramillo, T. F. Addressing the terawatt challenge: Scalability in the supply of chemical elements for renewable energy. RSC Adv. 2012, 2, 7933-7947.

37

Li, Z. S.; Luo, W. J.; Zhang, M. L.; Feng, J. Y.; Zou, Z. G. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347-370.

38

Faber, M. S.; Jin, S. Earth abundant inorganic electrocatalysts and their nanostructures for energy conversion applications. Energy Environ. Sci. 2014, 7, 3519-3542.

39

Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 2013, 42, 2294-2320.

40

Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X. G. Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy Environ. Sci. 2014, 7, 2504-2517.

41

Sun, K.; Shen, S. H.; Liang, Y. Q.; Burrows, P. E.; Mao, S. S.; Wang, D. L. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662-8719.

42

Hoang, S.; Berglund, S. P.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Enhancing visible light photo-oxidation of water with TiO2 nanowire arrays via cotreatment with H2 and NH3: Synergistic effects between Ti3+ and N. J. Am. Chem. Soc. 2012, 134, 3659-3662.

43

Liu, B.; Chen, H. M.; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P. D. Large-scale synthesis of transition-metal-doped TiO2 nanowires with controllable overpotential. J. Am. Chem. Soc. 2013, 135, 9995-9998.

44

Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432-449.

45

Bignozzi, C. A.; Caramori, S.; Cristino, V.; Argazzi, R.; Meda, L.; Tacca, A. Nanostructured photoelectrodes based on WO3: Applications to photooxidation of aqueous electrolytes. Chem. Soc. Rev. 2013, 42, 2228-2246.

46

Park, Y.; McDonald, K. J.; Choi, K. -S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321-2337.

47

Brillet, J.; Grätzel, M.; Sivula, K. Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting. Nano Lett. 2010, 10, 4155-4160.

48

Kay, A.; Cesar, I.; Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714-15721.

49

Le Formal, F.; Grätzel, M.; Sivula, K. Controlling photoactivity in ultrathin hematite films for solar water-splitting. Adv. Funct. Mater. 2010, 20, 1099-1107.

50

Sivula, K.; Zboril, R.; Le Formal, F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Grätzel, M. Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach. J. Am. Chem. Soc. 2010, 132, 7436-7444.

51

Tilley, S. D.; Cornuz, M.; Sivula, K.; Grätzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 2010, 49, 6405-6408.

52

Liu, R.; Lin, Y. J.; Chou, L. -Y.; Sheehan, S. W.; He, W. S.; Zhang, F.; Hou, H. J. M.; Wang, D. W. Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew. Chem. Int. Ed. 2011, 50, 499-502.

53

Ming, T.; Suntivich, J.; May, K. J.; Stoerzinger, K. A.; Kim, D. H.; Shao-Horn, Y. Visible light photo-oxidation in Au nanoparticle sensitized SrTiO3: Nb photoanode. J. Phys. Chem. C 2013, 117, 15532-15539.

54

Hassan, N. K.; Hashim, M. R.; Allam, N. K. ZnO nano-tetrapod photoanodes for enhanced solar-driven water splitting. Chem. Phys. Lett. 2012, 549, 62-66.

55

Zhen, C.; Wang, L. Z.; Liu, G.; Lu, G. Q.; Cheng, H. -M. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chem. Commun. 2013, 49, 3019-3021.

56

Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119-2125.

57

Ye, H.; Park, H. S.; Bard, A. J. Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 2011, 115, 12464-12470.

58

Park, H. S.; Lee, H. C.; Leonard, K. C.; Liu, G. J.; Bard, A. J. Unbiased photoelectrochemical water splitting in Z-scheme device using W/Mo-doped BiVO4 and ZnxCd1-xSe. ChemPhysChem 2013, 14, 2277-2287.

59

Holland, K.; Dutter, M. R.; Lawrence, D. J.; Reisner, B. A.; DeVore, T. C. Photoelectrochemical performance of W-doped BiVO4 thin films deposited by spray pyrolysis. J. Photonics Energy 2014, 4, 041598.

60

Zhou, M.; Bao, J.; Xu, Y.; Zhang, J. J.; Xie, J. F.; Guan, M. L.; Wang, C. L.; Wen, L. Y.; Lei, Y.; Xie, Y. Photoelectrodes based upon Mo: BiVO4 inverse opals for photoelectrochemical water splitting. ACS Nano 2014, 8, 7088-7098.

61

Song, X. C.; Yang, E.; Liu, G.; Zhang, Y.; Liu, Z. S.; Chen, H. F.; Wang, Y. Preparation and photocatalytic activity of Mo-doped WO3 nanowires. J. Nanopart. Res. 2010, 12, 2813-2819.

62

Cai, G. -F.; Wang, X. -L.; Zhou, D.; Zhang, J. -H.; Xiong, Q. -Q.; Gu, C. -D.; Tu, J. -P. Hierarchical structure Ti-doped WO3 film with improved electrochromism in visible-infrared region. RSC Adv. 2013, 3, 6896-6905.

63

Upadhyay, S. B.; Mishra, R. K.; Sahay, P. P. Structural and alcohol response characteristics of Sn-doped WO3 nanosheets. Sens. Actuators B 2014, 193, 19-27.

64

Guo, C. X.; Dong, Y. Q.; Yang, H. B.; Li, C. M. Graphene quantum dots as a green sensitizer to functionalize ZnO nanowire arrays on F-doped SnO2 glass for enhanced photoelectrochemical water splitting. Adv. Energy Mater. 2013, 3, 997-1003.

65

Lin, Y. -G.; Hsu, Y. -K.; Chen, Y. -C.; Chen, L. -C.; Chen, S. -Y.; Chen, K. -H. Visible-light-driven photocatalytic carbon-doped porous ZnO nanoarchitectures for solar water-splitting. Nanoscale 2012, 4, 6515-6519.

66

Mayer, M. A.; Yu, K. M.; Speaks, D. T.; Denlinger, J. D.; Reichertz, L. A.; Beeman, J. W.; Haller, E. E.; Walukiewicz, W. Band gap engineering of oxide photoelectrodes: Characterization of ZnO1-xSex. J. Phys. Chem. C 2012, 116, 15281-15289.

67

Yang, X. Y.; Wolcott, A.; Wang, G. M.; Sobo, A.; Fitzmorris, R. C.; Qian, F.; Zhang, J. Z.; Li, Y. Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting. Nano Lett. 2009, 9, 2331-2336.

68

Cesar, I.; Kay, A.; Martinez, J. A. G.; Grätzel, M. Translucent thin film Fe2O3 photoanodes for efficient water splitting by sunlight: Nanostructure-directing effect of Si-doping. J. Am. Chem. Soc. 2006, 128, 4582-4583.

69

Hu, Y. -S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. -N.; McFarland, E. W. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 2008, 20, 3803-3805.

70

Ingler, W. B.; Khan, S. U. M. Photoresponse of spray pyrolytically synthesized copper-doped p-Fe2O3 thin film electrodes in water splitting. Int. J. Hydrogen Energy 2005, 30, 821-827.

71

Kleiman-Shwarsctein, A.; Hu, Y. -S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 2008, 112, 15900-15907.

72

Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2011, 36, 2777-2784.

73

Cho, I. S.; Lee, C. H.; Feng, Y. Z.; Logar, M.; Rao, P. M.; Cai, L. L.; Kim, D. R.; Sinclair, R.; Zheng, X. L. Codoping titanium dioxide nanowires with tungsten and carbon for enhanced photoelectrochemical performance. Nat. Commun. 2013, 4, 1723.

74

Zhou, J. K.; Zhang, Y. X.; Zhao, X. S.; Ray, A. K. Photodegradation of benzoic acid over metal-doped TiO2. Ind. Eng. Chem. Res. 2006, 45, 3503-3511.

75

Mayer, M. T.; Du, C.; Wang, D. W. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials. J. Am. Chem. Soc. 2012, 134, 12406-12409.

76

Shaner, M. R.; Fountaine, K. T.; Ardo, S.; Coridan, R. H.; Atwater, H. A.; Lewis, N. S. Photoelectrochemistry of core-shell tandem junction n-p+-Si/n-WO3 microwire array photoelectrodes. Energy Environ. Sci. 2014, 7, 779-790.

77

Coridan, R. H.; Arpin, K. A.; Brunschwig, B. S.; Braun, P. V.; Lewis, N. S. Photoelectrochemical behavior of hierarchically structured Si/WO3 core-shell tandem photoanodes. Nano Lett. 2014, 14, 2310-2317.

78

Liu, C.; Tang, J. Y.; Chen, H. M.; Liu, B.; Yang, P. D. A fully integrated nanosystem of semiconductor nanowires for direct solar water splitting. Nano Lett. 2013, 13, 2989-2992.

79

Abdi, F. F.; Han, L. H.; Smets, A. H. M.; Zeman, M.; Dam, B.; van de Krol, R. Efficient solar water splitting by enhanced charge separation in a bismuth vanadate-silicon tandem photoelectrode. Nat. Commun. 2013, 4, 2195.

80

Leroy, C. M.; Maegli, A. E.; Sivula, K.; Hisatomi, T.; Xanthopoulos, N.; Otal, E. H.; Yoon, S.; Weidenkaff, A.; Sanjines, R.; Grätzel, M. LaTiO2N/In2O3 photoanodes with improved performance for solar water splitting. Chem. Commun. 2012, 48, 820-822.

81

Patil, R.; Kelkar, S.; Naphadeab, R.; Ogale, S. Low temperature grown CuBi2O4 with flower morphology and its composite with CuO nanosheets for photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 3661-3668.

82

AlOtaibi, B.; Nguyen, H. P.; Zhao, S.; Kibria, M. G.; Fan, S.; Mi, Z. Highly stable photoelectrochemical water splitting and hydrogen generation using a double-band InGaN/GaN core/shell nanowire photoanode. Nano Lett. 2013, 13, 4356-4361.

83

Yokoyama, D.; Minegishi, T.; Jimbo, K.; Hisatomi, T.; Ma, G. J.; Katayama, M.; Kubota, J.; Katagiri, H.; Domen, K. H2 evolution from water on modified Cu2ZnSnS4 photoelectrode under solar light. Appl. Phys. Express 2010, 3, 101202.

84

Sun, Y. F.; Sun, Z. H.; Gao, S.; Cheng, H.; Liu, Q. H.; Lei, F. C.; Wei, S. Q.; Xie, Y. All-surface-atomic-metal chalcogenide sheets for high-efficiency visible-light photoelectrochemical water splitting. Adv. Energy Mater. 2014, 4, 1300611.

85

Liu, J.; Li, X. -B.; Wang, D.; Liu, H.; Peng, P.; Liu, L. -M. Single-layer group-IVB nitride halides as promising photocatalysts. J. Mater. Chem. A 2014, 2, 6755-6761.

86

Li, W. Q.; Walther, C. F. J.; Kuc, A.; Heine, T. Density functional theory and beyond for band-gap screening: Performance for transition-metal oxides and dichalcogenides. J. Chem. Theory Comput. 2013, 9, 2950-2958.

87

Yourey, J. E.; Bartlett, B. M. Electrochemical deposition and photoelectrochemistry of CuWO4, a promising photoanode for water oxidation. J. Mater. Chem. 2011, 21, 7651-7660.

88

Kato, M.; Yasuda, T.; Miyake, K.; Ichimura, M.; Hatayama, T. Epitaxial p-type SiC as a self-driven photocathode for water splitting. Int. J. Hydrogen Energy 2014, 39, 4845-4849.

89

Biswas, S. K.; Baeg, J. -O. Enhanced photoactivity of visible light responsive W incorporated FeVO4 photoanode for solar water splitting. Int. J. Hydrogen Energy 2013, 38, 14451-14457.

90

Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J. Phys. Chem. C 2008, 112, 747-753.

91

Hahn, N. T.; Hoang, S.; Self, J. L.; Mullins, C. B. Spray pyrolysis deposition and photoelectrochemical properties of n-type BiOI nanoplatelet thin films. ACS Nano 2012, 6, 7712-7722.

92

Wang, X. C.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76-80.

93

Chen, S. Y.; Wang, L. -W. Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 2012, 24, 3659-3666.

94

Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C. Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nat. Mater. 2011, 10, 539-544.

95

Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 2013, 135, 1057-1064.

96

Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 2012, 11, 963-969.

97

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274-10277.

98

Merki, D.; Vrubel, H.; Rovelli, L.; Fierro, S.; Hu, X. L. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem. Sci. 2012, 3, 2515-2525.

99

Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267-9270.

100

McKone, J. R.; Sadtler, B. F.; Werlang, C. A.; Lewis, N. S.; Gray, H. B. Ni-Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 2013, 3, 166-169.

101

Parsons, R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans. Faraday Soc. 1958, 54, 1053-1063.

102

Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A. et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. J. Am. Chem. Soc. 2011, 133, 1216-1219.

103

Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. D. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 2013, 135, 12932-12935.

104

Dai, P. C.; Xie, J.; Mayer, M. T.; Yang, X. G.; Zhan, J. H.; Wang, D. W. Solar hydrogen generation by silicon nanowires modified with platinum nanoparticle catalysts by atomic layer deposition. Angew. Chem. Int. Ed. 2013, 52, 11119-11123.

105

Kye, J.; Shin, M.; Lim, B.; Jang, J. W.; Oh, I.; Hwang, S. Platinum monolayer electrocatalyst on gold nanostructures on silicon for photoelectrochemical hydrogen evolution. ACS Nano 2013, 7, 6017-6023.

106

Paracchino, A.; Laporte, V.; Sivula, K.; Grätzel, M.; Thimsen, E. Highly active oxide photocathode for photoelectrochemical water reduction. Nat. Mater. 2011, 10, 456-461.

107

Dai, P. C.; Li, W.; Xie, J.; He, Y. M.; Thorne, J.; McMahon, G.; Zhan, J. H.; Wang, D. W. Forming buried junctions to enhance photovoltage by cuprous oxide in aqueous solutions. Angew. Chem. Int. Ed. 2014, 53, 13493-13497.

108

Kim, J.; Minegishi, T.; Kobota, J.; Domen, K. Investigation of Cu-deficient copper gallium selenide thin film as a photocathode for photoelectrochemical water splitting. Jpn. J. Appl. Phys. 2012, 51, 015802.

109

Gunawan; Septina, W.; Ikeda, S.; Harada, T.; Minegishi, T.; Domen, K.; Matsumura, M. Platinum and indium sulfide-modified CuInS2 as efficient photocathodes for photoelectrochemical water splitting. Chem. Commun. 2014, 50, 8941-8943.

110

Baglio, J. A.; Calabrese, G. S.; Harrison, D. J.; Kamieniecki, E.; Ricco, A. J.; Wrighton, M. S.; Zoski, G. D. Electrochemical characterization of p-type semiconducting tungsten disulfide photocathodes: Efficient photoreduction processes at semiconductor/liquid electrolyte interfaces. J. Am. Chem. Soc. 1983, 105, 2246-2256.

111

Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Björketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O. et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. Nat. Mater. 2011, 10, 434-438.

112

Huang, Z. P.; Chen, Z. B.; Chen, Z. Z.; Lv, C. C.; Meng, H.; Zhang, C. Ni12P5 nanoparticles as an efficient catalyst for hydrogen generation via electrolysis and photoelectrolysis. ACS Nano 2014, 8, 8121-8129.

113

Warren, E. L.; McKone, J. R.; Atwater, H. A.; Gray, H. B.; Lewis, N. S. Hydrogen-evolution characteristics of Ni-Mo-coated, radial junction, n+p-silicon microwire array photocathodes. Energy Environ. Sci. 2012, 5, 9653-9661.

114

Lin, Y. J.; Battaglia, C.; Boccard, M.; Hettick, M.; Yu, Z.; Ballif, C.; Ager, J. W.; Javey, A. Amorphous Si thin film based photocathodes with high photovoltage for efficient hydrogen production. Nano Lett. 2013, 13, 5615-5618.

115

Huang, Z. P.; Wang, C. F.; Chen, Z. B.; Meng, H.; Lv, C. C.; Chen, Z. Z.; Han, R. Q.; Zhang, C. Tungsten sulfide enhancing solar-driven hydrogen production from silicon nanowires. ACS Appl. Mater. Interfaces 2014, 6, 10408-10414.

116

Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. Angew. Chem. Int. Ed. 2012, 51, 9128-9131.

117

Lin, C. -Y.; Lai, Y. -H.; Mersch, D.; Reisner, E. Cu2O|NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting. Chem. Sci. 2012, 3, 3482-3487.

118

Morales-Guio, C. G.; Tilley, S. D.; Vrubel, H.; Grätzel, M.; Hu, X. L. Hydrogen evolution from a copper(Ⅰ) oxide photocathode coated with an amorphous molybdenum sulphide catalyst. Nat. Commun. 2014, 5, 3059.

119

Tilley, S. D.; Schreier, M.; Azevedo, J.; Stefik, M.; Graetzel, M. Ruthenium oxide hydrogen evolution catalysis on composite cuprous oxide water-splitting photocathodes. Adv. Funct. Mater. 2014, 24, 303-311.

120
Benck, J. D.; Lee, S. C.; Fong, K. D.; Kibsgaard, J.; Sinclair, R.; Jaramillo, T. F. Designing active and stable silicon photocathodes for solar hydrogen production using molybdenum sulfide nanomaterials. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201400739.https://doi.org/10.1002/aenm.201400739
DOI
121

Rasiyah, P.; Tseung, A. C. C. The role of the lower metal oxide/higher metal oxide couple in oxygen evolution reactions. J. Electrochem. Soc. 1984, 131, 803-808.

122

Esswein, A. J.; Surendranath, Y.; Reece, S. Y.; Nocera, D. G. Highly active cobalt phosphate and borate based oxygen evolving catalysts operating in neutral and natural waters. Energy Environ. Sci. 2011, 4, 499-504.

123

Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60-63.

124

Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625-627.

125

Sun, K.; Pang, X. L.; Shen, S. H.; Qian, X. Q.; Cheung, J. S.; Wang, D. L. Metal oxide composite enabled nanotextured Si photoanode for efficient solar driven water oxidation. Nano Lett. 2013, 13, 2064-2072.

126

Hoang, S.; Guo, S. W.; Hahn, N. T.; Bard, A. J.; Mullins, C. B. Visible light driven photoelectrochemical water oxidation on nitrogen-modified TiO2 nanowires. Nano Lett. 2012, 12, 26-32.

127

Diab, M.; Mokari, T. Thermal decomposition approach for the formation of α-Fe2O3 mesoporous photoanodes and an α-Fe2O3/CoO hybrid structure for enhanced water oxidation. Inorg. Chem. 2014, 53, 2304-2309.

128

Lichterman, M. F.; Shaner, M. R.; Handler, S. G.; Brunschwig, B. S.; Gray, H. B.; Lewis, N. S.; Spurgeon, J. M. Enhanced stability and activity for water oxidation in alkaline media with bismuth vanadate photoelectrodes modified with a cobalt oxide catalytic layer produced by atomic layer deposition. J. Phys. Chem. Lett. 2013, 4, 4188-4191.

129

Liu, G. J.; Shi, J. Y.; Zhang, F. X.; Chen, Z.; Han, J. F.; Ding, C. M.; Chen, S. S.; Wang, Z. L.; Han, H. X.; Li, C. A tantalum nitride photoanode modified with a hole-storage layer for highly stable solar water splitting. Angew. Chem. Int. Ed. 2014, 53, 7295-7299.

130

Kim, J. Y.; Magesh, G.; Youn, D. H.; Jang, J. W.; Kubota, J.; Domen, K.; Lee, J. S. Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting. Sci. Rep. 2013, 3, 2681.

131

Qiu, Y. C.; Leung, S. -F.; Zhang, Q. P.; Hua, B.; Lin, Q. F.; Wei, Z. H.; Tsui, K. -H.; Zhang, Y. G.; Yang, S. H.; Fan, Z. Y. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures. Nano Lett. 2014, 14, 2123-2129.

132

Li, Y. B.; Zhang, L.; Torres-Pardo, A.; González-Calbet, J. M.; Ma, Y. H.; Oleynikov, P.; Terasaki, O.; Asahina, S.; Shima, M.; Cha, D. et al. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency. Nat. Commun. 2013, 4, 2566.

133

Abdi, F. F.; Firet, N.; van de Krol, R. Efficient BiVO4 thin film photoanodes modified with cobalt phosphate catalyst and W-doping. ChemCatChem 2013, 5, 490-496.

134

Kim, T. W.; Choi, K. -S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990-994.

135

Strandwitz, N. C.; Comstock, D. J.; Grimm, R. L.; Nichols-Nielander, A. C.; Elam, J.; Lewis, N. S. Photoelectrochemical behavior of n-type Si(100) electrodes coated with thin films of manganese oxide grown by atomic layer deposition. J. Phys. Chem. C 2013, 117, 4931-4936.

136

Du, C.; Yang, X. G.; Mayer, M. T.; Hoyt, H.; Xie, J.; McMahon, G.; Bischoping, G.; Wang, D. W. Hematite-based water splitting with low turn-on voltages. Angew. Chem. Int. Ed. 2013, 52, 12692-12695.

137

Chemelewski, W. D.; Lee, H. -C.; Lin, J. F.; Bard, A. J.; Mullins, C. B. Amorphous FeOOH oxygen evolution reaction catalyst for photoelectrochemical water splitting. J. Am. Chem. Soc. 2014, 136, 2843-2850.

138

Klepser, B. M.; Bartlett, B. M. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation. J. Am. Chem. Soc. 2014, 136, 1694-1697.

139

Cox, C. R.; Winkler, M. T.; Pijpers, J. J. H.; Buonassisi, T.; Nocera, D. G. Interfaces between water splitting catalysts and buried silicon junctions. Energy Environ. Sci. 2013, 6, 532-538.

140

Bard, A. J.; Bocarsly, A. B.; Fan, F. R. F.; Walton, E. G.; Wrighton, M. S. The concept of Fermi level pinning at semiconductor-liquid junctions. Consequences for energy-conversion efficiency and selection of useful solution redox couples in solar devices. J. Am. Chem. Soc. 1980, 102, 3671-3677.

141

Yang, X. G.; Du, C.; Liu, R.; Xie, J.; Wang, D. W. Balancing photovoltage generation and charge-transfer enhancement for catalyst-decorated photoelectrochemical water splitting: A case study of the hematite/MnOx combination. J. Catal. 2013, 304, 86-91.

142

Trotochaud, L.; Mills, T. J.; Boettcher, S. W. An optocatalytic model for semiconductor-catalyst water-splitting photoelectrodes based on in situ optical measurements on operational catalysts. J. Phys. Chem. Lett. 2013, 4, 931-935.

143

Mei, B.; Permyakova, A. A.; Frydendal, R.; Bae, D.; Pedersen, T.; Malacrida, P.; Hansen, O.; Stephens, I. E. L.; Vesborg, P. C. K.; Seger, B. et al. Iron-treated NiO as a highly transparent p-type protection layer for efficient Si-based photoanodes. J. Phys. Chem. Lett. 2014, 5, 3456-3461.

144

Luo, J. S.; Im, J. -H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. -G.; Tilley, S. D.; Fan, H. J.; Grätzel, M. Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth abundant catalysts. Science 2014, 345, 1593-1596.

145

Cox, C. R.; Lee, J. Z.; Nocera, D. G.; Buonassisi, T. Ten-percent solar-to-fuel conversion with nonprecious materials. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 14057-14061.

Publication history
Copyright
Acknowledgements

Publication history

Received: 07 August 2014
Revised: 23 October 2014
Accepted: 13 November 2014
Published: 27 December 2014
Issue date: January 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by Boston College, NSF (DMR 1055762 and 1317280), and MassCEC. R. L. is supported by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award Number DE-SC0004993. We acknowledge partial support by the Program for Innovative Research Team (in Science and Technology) in University of Henan Province (No. 2012IRTSTHN021), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (No. 144200510014) and National Natural Science Foundation of China (No. 21273192). D.W. is an Alfred P. Sloan Fellow.

Return