Journal Home > Volume 8 , Issue 5

Combination therapy via nanoparticulate systems has already been proposed as a synergistic approach for cancer treatment. Herein, undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with sorafenib and surface-biofunctionalized with anti-CD326 antibody (Ab) were developed for cancer chemo-immunotherapy in MCF-7 and MDA-MB-231 breast cancer cells. The cytocompatibility study showed no significant toxicity for the bare and antibody-conjugated UnTHCPSi (Un-Ab) NPs at concentrations lower than 200 μg·mL-1. Compared to the bare UnTHCPSi, Un-Ab NPs loaded with sorafenib reduced the premature drug release in plasma, increasing the probability of proper drug targeting. In addition, high cellular interaction and subsequent internalization of the Un-Ab NPs into the cells expressing CD326 antigen demonstrated the possibility of improving antigen-mediated endocytosis via CD326 targeting. While an in vitro antitumor study revealed a higher inhibitory effect of the sorafenib-loaded Un-Ab NPs compared to the drug-loaded UnTHCPSi NPs in the CD326 positive MCF-7 cells, there was no difference in the anti-proliferation impact of both the abovementioned NPs in the CD326 negative MDA-MB-231 cells, suggesting CD326 as an appropriate receptor for Ab-mediated drug delivery. It was also shown that the anti-CD326 Ab can act as an immunotherapeutic agent by inducing antibody dependent cellular cytotoxicity and enhancing the interaction of effector immune and cancer cells for subsequent phagocytosis and cytokine secretion. Hence, the developed nanovectors can be applied for simultaneous tumor-selective drug targeting and immunotherapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors

Show Author's information Mohammad-Ali Shahbazi1( )Neha Shrestha1Ermei Mäkilä1,2Francisca Araújo1,3,4Alexandra Correia1Tomás Ramos5Bruno Sarmento3,6Jarno Salonen2Jouni Hirvonen1Hélder A. Santos1( )
Division of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiFI-00014Helsinki, Finland
Laboratory of Industrial PhysicsDepartment of Physics and AstronomyUniversity of TurkuFI-20014Turku, Finland
INEB — Instituto de Engenharia BiomédicaNewTherapies GroupUniversidade do PortoRua do Campo Alegre823, 4150-180Porto, Portugal
ICBAS — Instituto Ciências Biomédicas Abel SalazarUniversity of PortoRua de Jorge Viterbo Ferreira4050-313Porto, Portugal
Faculty of PharmacyUniversity of Coimbra3000-548Coimbra, Portugal
IINFACTS – Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da SaúdeInstituto Superior de Ciências da Saúde-NorteDepartment of Pharmaceutical SciencesCESPU, Rua Central de Gandra4585-116Gandra, Portugal

Abstract

Combination therapy via nanoparticulate systems has already been proposed as a synergistic approach for cancer treatment. Herein, undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with sorafenib and surface-biofunctionalized with anti-CD326 antibody (Ab) were developed for cancer chemo-immunotherapy in MCF-7 and MDA-MB-231 breast cancer cells. The cytocompatibility study showed no significant toxicity for the bare and antibody-conjugated UnTHCPSi (Un-Ab) NPs at concentrations lower than 200 μg·mL-1. Compared to the bare UnTHCPSi, Un-Ab NPs loaded with sorafenib reduced the premature drug release in plasma, increasing the probability of proper drug targeting. In addition, high cellular interaction and subsequent internalization of the Un-Ab NPs into the cells expressing CD326 antigen demonstrated the possibility of improving antigen-mediated endocytosis via CD326 targeting. While an in vitro antitumor study revealed a higher inhibitory effect of the sorafenib-loaded Un-Ab NPs compared to the drug-loaded UnTHCPSi NPs in the CD326 positive MCF-7 cells, there was no difference in the anti-proliferation impact of both the abovementioned NPs in the CD326 negative MDA-MB-231 cells, suggesting CD326 as an appropriate receptor for Ab-mediated drug delivery. It was also shown that the anti-CD326 Ab can act as an immunotherapeutic agent by inducing antibody dependent cellular cytotoxicity and enhancing the interaction of effector immune and cancer cells for subsequent phagocytosis and cytokine secretion. Hence, the developed nanovectors can be applied for simultaneous tumor-selective drug targeting and immunotherapy.

Keywords: breast cancer, CD326, antibody, porous silicon nanoparticles, chemo-immunotherapy, drug targeting

References(52)

1

Nowak, A. K.; Lake, R. A.; Robinson, B. W. Combined chemoimmunotherapy of solid tumours: Improving vaccines. Adv. Drug Deliv. Rev. 2006, 58, 975–990.

2

Lee, I. H.; An, S.; Yu, M. K.; Kwon, H. K.; Im, S. H.; Jon, S. Targeted chemoimmunotherapy using drug-loaded aptamer-dendrimer bioconjugates. J. Control. Release 2011, 155, 435–441.

3

Molavi, O.; Xiong, X. B.; Douglas, D.; Kneteman, N.; Nagata, S.; Pastan, I.; Chu, Q.; Lavasanifar, A.; Lai, R. Anti-cd30 antibody conjugated liposomal doxorubicin with significantly improved therapeutic efficacy against anaplastic large cell lymphoma. Biomaterials 2013, 34, 8718–8725.

4

Maeda, H.; Matsumura, Y. Epr effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv. Drug Deliv. Rev. 2011, 63, 129–130.

5

Byrne, J. D.; Betancourt, T.; Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008, 60, 1615–1626.

6

Chattopadhyay, N.; Fonge, H.; Cai, Z.; Scollard, D.; Lechtman, E.; Done, S. J.; Pignol, J. P.; Reilly, R. M. Role of antibody-mediated tumor targeting and route of administration in nanoparticle tumor accumulation in vivo. Mol. Pharmaceutics 2012, 9, 2168–2179.

7

Lu, Y. M.; Huang, J. Y.; Wang, H.; Lou, X. F.; Liao, M. H.; Hong, L. J.; Tao, R. R.; Ahmed, M. M.; Shan, C. L.; Wang, X. L. et al. Targeted therapy of brain ischaemia using Fas ligand antibody conjugated peg–lipid nanoparticles. Biomaterials 2014, 35, 530–537.

8

Fiandra, L.; Mazzucchelli, S.; De Palma, C.; Colombo, M.; Allevi, R.; Sommaruga, S.; Clementi, E.; Bellini, M.; Prosperi, D.; Corsi, F. Assessing the in vivo targeting efficiency of multifunctional nanoconstructs bearing antibody-derived ligands. ACS Nano 2013, 7, 6092–6102.

9

Weiner, L. M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327.

10

Portnoy, E.; Lecht, S.; Lazarovici, P.; Danino, D.; Magdassi, S. Cetuximab-labeled liposomes containing near-infrared probe for in vivo imaging. Nanomedicine 2011, 7, 480–488.

11

Berlin, J. M.; Pham, T. T.; Sano, D.; Mohamedali, K. A.; Marcano, D. C.; Myers, J. N.; Tour, J. M. Noncovalent functionalization of carbon nanovectors with an antibody enables targeted drug delivery. ACS Nano 2011, 5, 6643– 6650.

12

Gu, L.; Ruff, L. E.; Qin, Z.; Corr, M.; Hedrick, S. M.; Sailor, M. J. Multivalent porous silicon nanoparticles enhance the immune activation potency of agonistic cd40 antibody. Adv. Mater. 2012, 24, 3981–3987.

13

Illum, L.; Jones, P. D.; Baldwin, R. W.; Davis, S. S. Tissue distribution of poly(hexyl-2-cyanoacrylate) nanoparticles coated with monoclonal antibodies in mice bearing human tumor xenografts. J. Pharmacol. Exp. Ther. 1984, 230, 733–736.

14

Chinol, M.; Casalini, P.; Maggiolo, M.; Canevari, S.; Omodeo, E. S.; Caliceti, P.; Veronese, F. M.; Cremonesi, M.; Chiolerio, F.; Nardone, E. et al. Biochemical modifications of avidin improve pharmacokinetics and biodistribution, and reduce immunogenicity. Br. J. Cancer 1998, 78, 189–197.

15

Scott, D.; Nitecki, D. E.; Kindler, H.; Goodman, J. W. Immunogenicity of biotinylated hapten–avidin complexes. Mol. Immunol. 1984, 21, 1055–1060.

16

Zhao, J.; Mi, Y.; Liu, Y.; Feng, S. S. Quantitative control of targeting effect of anticancer drugs formulated by ligand-conjugated nanoparticles of biodegradable copolymer blend. Biomaterials 2012, 33, 1948–1958.

17

Liu, Y.; Li, K.; Liu, B.; Feng, S. S. A strategy for precision engineering of nanoparticles of biodegradable copolymers for quantitative control of targeted drug delivery. Biomaterials 2010, 31, 9145–9155.

18

Venturelli, E.; Fabbro, C.; Chaloin, O.; Menard-Moyon, C.; Smulski, C. R.; Da Ros, T.; Kostarelos, K.; Prato, M.; Bianco, A. Antibody covalent immobilization on carbon nanotubes and assessment of antigen binding. Small 2011, 7, 2179–2187.

19

Firer, M. A.; Gellerman, G. Targeted drug delivery for cancer therapy: The other side of antibodies. J. Hematol. Oncol. 2012, 5, 70.

20

Mitra, M.; Misra, R.; Harilal, A.; Sahoo, S. K.; Krishnakumar, S. Enhanced in vitro antiproliferative effects of EpCAM antibody-functionalized paclitaxel-loaded PLGA nanoparticles in retinoblastoma cells. Mol. Vis. 2011, 17, 2724–2737.

21

Winter, M. J.; Nagtegaal, I. D.; van Krieken, J. H.; Litvinov, S. V. The epithelial cell adhesion molecule (Ep-CAM) as a morphoregulatory molecule is a tool in surgical pathology. Am. J. Pathol. 2003, 163, 2139–2148.

22

Martowicz, A.; Spizzo, G.; Gastl, G.; Untergasser, G. Phenotype-dependent effects of epcam expression on growth and invasion of human breast cancer cell lines. BMC Cancer 2012, 12, 501.

23

Santos, H. A.; Bimbo, L. M.; Herranz, B.; Shahbazi, M. A.; Hirvonen, J.; Salonen, J. Nanostructured porous silicon in preclinical imaging: Moving from bench to bed side. J. Mater. Res. 2013, 28, 152–164.

24

Shahbazi, M. A.; Almeida, P. V.; Mäkilä, E.; Correia, A.; Ferreira, M. P.; Kaasalainen, M.; Salonen, J.; Hirvonen, J.; Santos, H. A. Poly(methyl vinyl ether-alt-maleic acid)-functionalized porous silicon nanoparticles for enhanced stability and cellular internalization. Macromol. Rapid Commun. 2014, 35, 624–629.

25

Shahbazi, M. A.; Hamidi, M.; Mäkilä, E. M.; Zhang, H.; Almeida, P. V.; Kaasalainen, M.; Salonen, J. J.; Hirvonen, J. T.; Santos, H. A. The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 2013, 34, 7776–7789.

26

Shahbazi, M. A.; Herranz, B.; Santos, H. A. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2012, 2, 296–312.

27

Barnes, T. J.; Jarvis, K. L.; Prestidge, C. A. Recent advances in porous silicon technology for drug delivery. Ther. Deliv. 2013, 4, 811–823.

28

Zhang, M.; Xu, R.; Xia, X.; Yang, Y.; Gu, J.; Qin, G.; Liu, X.; Ferrari, M.; Shen, H. Polycation-functionalized nanoporous silicon particles for gene silencing on breast cancer cells. Biomaterials 2014, 35, 423–431.

29

Tabasi, O.; Falamaki, C.; Khalaj, Z. Functionalized mesoporous silicon for targeted-drug-delivery. Colloids Surf. B—Biointerfaces 2012, 98, 18–25.

30

Ferris, D. P.; Lu, J.; Gothard, C.; Yanes, R.; Thomas, C. R.; Olsen, J. C.; Stoddart, J. F.; Tamanoi, F.; Zink, J. I. Synthesis of biomolecule-modified mesoporous silica nanoparticles for targeted hydrophobic drug delivery to cancer cells. Small 2011, 7, 1816–1826.

31

Xu, R.; Huang, Y.; Mai, J.; Zhang, G.; Guo, X.; Xia, X.; Koay, E. J.; Qin, G.; Erm, D. R.; Li, Q. et al. Multistage vectored siRNA targeting ataxia-telangiectasia mutated for breast cancer therapy. Small 2013, 9, 1799–1808.

32

Rytkönen, J.; Arukuusk, P.; Xu, W.; Kurrikoff, K.; Langel, U.; Lehto, V. P.; Närvänen, A. Porous silicon-cell penetrating peptide hybrid nanocarrier for intracellular delivery of oligonucleotides. Mol. Pharmaceutics 2013, 11, 382–390.

33

Secret, E.; Smith, K.; Dubljevic, V.; Moore, E.; Macardle, P.; Delalat, B.; Rogers, M. L.; Johns, T. G.; Durand, J. O.; Cunin, F. et al. Antibody-functionalized porous silicon nanoparticles for vectorization of hydrophobic drugs. Adv. Health. Mater. 2013, 2, 718–727.

34

Santos, H. A.; Riikonen, J.; Salonen, J.; Mäkilä, E.; Heikkilä, T.; Laaksonen, T.; Peltonen, L.; Lehto, V. P.; Hirvonen, J. In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomater. 2010, 6, 2721–2731.

35

Shrestha, N; Shahbazi, M. A; Araújo, F; Zhang, H; Mäkilä, E; Kauppila, J; Sarmento, B; Salonen, J; Hirvonen, J; Santos, H. A. Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials 2014, 35, 7172–7179.

36

Shahbazi, M. A.; Almeida, P. V.; Mäkilä, E.; Kaasalainen, N.; Salonen, J.; Hirvonen, J.; Santos, H. A. Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials 2014, 35, 7488–7500.

37

Jalkanen, T.; Mäkilä, E.; Sakka, T.; Salonen, J.; Ogata, Y. H. Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Res. Lett. 2012, 7, 311.

38

Occhipinti, E.; Verderio, P.; Natalello, A.; Galbiati, E.; Colombo, M.; Mazzucchelli, S.; Salvade, A.; Tortora, P.; Doglia, S. M.; Prosperi, D. Investigating the structural biofunctionality of antibodies conjugated to magnetic nanoparticles. Nanoscale 2011, 3, 387–390.

39

Danhier, F.; Feron, O.; Preat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 2010, 148, 135–146.

40

Sasidharan, S.; Jayasree, A.; Fazal, S.; Koyakutty, M.; Nair, S. V.; Menon, D. Ambient temperature synthesis of citrate stabilized and biofunctionalized, fluorescent calcium fluoride nanocrystals for targeted labeling of cancer cells. Biomater. Sci. 2013, 1, 294–305.

41

Kong, J.; Yu, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. (Shanghai) 2007, 39, 549–559.

42

Kwon, I. K.; Lee, S. C.; Han, B.; Park, K. Analysis on the current status of targeted drug delivery to tumors. J. Control. Release 2012, 164, 108–114.

43

Shen, J.; Sun, H.; Meng, Q.; Yin, Q.; Zhang, Z.; Yu, H.; Li, Y. Simultaneous inhibition of tumor growth and angiogenesis for resistant hepatocellular carcinoma by co-delivery of sorafenib and survivin small hairpin RNA. Mol. Pharmaceutics 2014, 11, 3342–3351.

44

Seidel, U. J.; Schlegel, P.; Lang, P. Natural killer cell mediated antibody-dependent cellular cytotoxicity in tumor immunotherapy with therapeutic antibodies. Front. Immunol. 2013, 4, 76.

45

Weiner, L. M.; Dhodapkar, M. V.; Ferrone, S. Monoclonal antibodies for cancer immunotherapy. Lancet 2009, 373, 1033–1040.

46

Chowdhury, F.; Lode, H. N.; Cragg, M. S.; Glennie, M. J.; Gray, J. C. Development of immunomonitoring of antibody-dependent cellular cytotoxicity against neuroblastoma cells using whole blood. Cancer Immunol. Immunother. 2014, 63, 559–569.

47

Iannello, A.; Ahmad, A. Role of antibody-dependent cell-mediated cytotoxicity in the efficacy of therapeutic anti-cancer monoclonal antibodies. Cancer Metastasis Rev. 2005, 24, 487–499.

48

van Sorge, N. M.; van der Pol, W. L.; van de Winkel, J. G. Fcgammar polymorphisms: Implications for function, disease susceptibility and immunotherapy. Tissue Antigens 2003, 61, 189–202.

49

Smith, K. A. Interleukin-2: Inception, impact, and implications. Science 1988, 240, 1169–1176.

50

Strome, S. E.; Sausville, E. A.; Mann, D. A mechanistic perspective of monoclonal antibodies in cancer therapy beyond target-related effects. Oncologist 2007, 12, 1084–1095.

51

Kawaguchi, Y.; Kono, K.; Mimura, K.; Sugai, H.; Akaike, H.; Fujii, H. Cetuximab induce antibody-dependent cellular cytotoxicity against egfr-expressing esophageal squamous cell carcinoma. Int. J. Cancer 2007, 120, 781–787.

52

El-Dakdouki, M. H.; Pure, E.; Huang, X. Development of drug loaded nanoparticles for tumor targeting. Part 1: Synthesis, characterization, and biological evaluation in 2D cell cultures. Nanoscale 2013, 5, 3895–3903.

File
12274_2014_635_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 July 2014
Revised: 31 October 2014
Accepted: 04 November 2014
Published: 03 December 2014
Issue date: May 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

Dr. H. A. Santos acknowledges financial support from the Academy of Finland (decision Nos. 252215 and 256394), the University of Helsinki Research Funds, the Biocentrum Helsinki, and the European Research Council under the European Union's Seventh Framework Programme (FP/2007–2013) Grant No. 310892. Francisca Araújo would like to thank to FCT for financial support (SFRH/BD/87016/2012).

Return