Journal Home > Volume 8 , Issue 5

Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were confirmed by TEM and XRD, showed that partial cation exchange occurred inside the CdSe QDs. Two main mechanisms are responsible for the excellent photothermal conversion: inhibition of radiative recombination of carriers due to the formation of type-Ⅱ semiconductor heterostructures, and the large surface-to-volume ratio of the QDs. Photothermal conversion experiments indicated that the CdSe/Bi2Se3 QDs showed high photothermal conversion efficiency and excellent NIR photostability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Excellent photothermal conversion of core/shell CdSe/Bi2Se3 quantum dots

Show Author's information Guo Zhi Jia1,2Wen Kai Lou1Fang Cheng3Xiong Long Wang4Jiang Hong Yao4Ning Dai5Hai Qing Lin6Kai Chang1( )
Institute of SemiconductorsChinese Academy of Sciences, P.O. Box 912Beijing100083China
Tianjin Chengjian UniversityTianjin300384China
Department of Physics and Electronic ScienceChangsha University of Science and TechnologyChangsha410004China
Key Laboratory of Weak-Light Nonlinear PhotonicsMinistry of EducationSchool of Physics and TEDA Applied Physics SchoolNankai UniversityTianjin300457China
The National Laboratory for Infrared Physicsthe Shanghai Institute of Technical Physics of the Chinese Academy of SciencesShanghai200083China
Beijing Computational Science Research CenterBeijing100084China

Abstract

Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were confirmed by TEM and XRD, showed that partial cation exchange occurred inside the CdSe QDs. Two main mechanisms are responsible for the excellent photothermal conversion: inhibition of radiative recombination of carriers due to the formation of type-Ⅱ semiconductor heterostructures, and the large surface-to-volume ratio of the QDs. Photothermal conversion experiments indicated that the CdSe/Bi2Se3 QDs showed high photothermal conversion efficiency and excellent NIR photostability.

Keywords: quantum dots, photothermal, cation exchange, type-Ⅱ heterostructure, CdSe/Bi2Se3

References(55)

1

Zhang, W. C.; Li, Q.; Qiu, M. A plasmon ruler based on nanoscale photothermal effect. Opt. Express 2013, 21, 172–181.

2

Ting, L.; Tian, J. G.; Chen, Z. L.; Liang, Y.; Liu, J.; Liu, S.; Li, J. H.; Zhan, J. H.; Yang, X. S. Anti-TROP2 conjugated hollow gold nanospheres as a novel nanostructure for targeted photothermal destruction of cervical cancer cells. Nanotechnology 2014, 25, 345103.

3

Yim, J. Y.; Kim, H.; Ryu, S.; Song, S. W.; Kim, H. O.; Hyun, K. -A.; Jung, H. -I.; Joo, C. Photothermal spectral-domain optical coherence reflectometry for direct measurement of hemoglobin concentration of erythrocytes. Biosens. Bioelectron. 2014, 57, 59–64.

4

Strzalkowski, K.; Zakrzewski, J.; Maliński, M. Determination of the exciton binding energy using photothermal and photoluminescence spectroscopy. Int. J. Thermophys. 2013, 34, 691–700.

5

Wang, Z. Z.; Chen, Z. W.; Liu, Z.; Shi, P.; Dong, K.; Ju, E. G.; Ren, J. S.; Qu, X. G. A multi-stimuli responsive gold nanocage-hyaluronic platform for targeted photothermal and chemotherapy. Biomaterials 2014, 35, 9678–9688.

6

Byeon, J. H.; Kim, Y. -W. Au–TiO2 nanoscale heterodimers synthesis from an ambient spark discharge for efficient photocatalytic and photothermal activity. ACS Appl. Mater. Interfaces 2014, 6, 763–767.

7

Chen, J. Y.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M. X.; Gidding, M.; Welch, M. J.; Xia, Y. N. Gold nanocages as photothermal transducers for cancer treatment. Small 2010, 6, 811–817.

8

Chu, M. Q.; Pan, X. J.; Zhang, D.; Wu, Q.; Peng, J. L.; Hai, W. X. The therapeutic efficacy of CdTe and CdSe quantum dots for photothermal cancer therapy. Biomaterials 2012, 33, 7071–7083.

9

Cole, J. R.; Mirin, N. A.; Knight, M. W.; Goodrich, G. P.; Halas, N. J. Photothermal efficiencies of nanoshells and nanorods for clinical therapeutic applications. J. Phys. Chem. C 2009, 113, 12090–12094.

10

Dickerson, E. B.; Dreaden, E. C.; Huang, X. H.; El-Sayed, I. H.; Chu, H. H.; Pushpanketh, S.; McDonald, J. F.; El-Sayed, M. A. Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 2008, 269, 57–66.

11

Fisher, J. W.; Sarkar, S.; Buchanan, C. F.; Szot, C. S.; Whitney, J.; Hatcher, H. C.; Torti, S. V.; Rylander, C. G.; Rylander, M. N. Photothermal response of human and murine cancer cells to multiwalled carbon nanotubes after laser irradiation. Cancer Res. 2010, 70, 9855–9864.

12

Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560–2566.

13

Huang, X. Q.; Tang, S. H.; Liu, B. J.; Ren, B.; Zheng, N. F. Enhancing the photothermal stability of plasmonic metal nanoplates by a core–shell architecture. Adv. Mater. 2011, 23, 3420–3425.

14

Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. -K.; Park, H.; Suh, J. -S.; Lee, K.; Yoo, K. -H.; Kim, E. -K.; et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Ed. 2011, 50, 441–444.

15

Jain, P. K.; Huang, X. H.; El-Sayed, I. H.; El-Sayed, M. A. Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 2008, 41, 1578–1586.

16

Lambert, T. N.; Andrews, N. L.; Gerung, H.; Boyle, T. J.; Oliver, J. M.; Wilson, B. S.; Han, S. M. Water-soluble germanium(0) nanocrystals: Cell recognition and near-infrared photothermal conversion properties. Small 2007, 3, 691–699.

17

Tang, S. H.; Huang, X. Q.; Zheng, N. F. Silica coating improves the efficacy of Pd nanosheets for photothermal therapy of cancer cells using near infrared laser. Chem. Commun. 2011, 47, 3948–3950.

18

Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761–9771.

19

Tian, Q. W.; Tang, M. H.; Sun, Y. G.; Zou, R. J.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv. Mater. 2011, 23, 3542–3547.

20

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. -T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano. Lett. 2010, 10, 3318–3323.

21

Lim, D. -K.; Barhoumi, A.; Wylie, R. G.; Reznor, G.; Langer, R. S.; Kohane, D. S. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett. 2013, 13, 4075–4079.

22

Li, J.; Jiang, F.; Yang, B.; Song, X. -R.; Liu, Y.; Yang, H. -H.; Cao, D. -R.; Shi, W. -R.; Chen, G. -N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Sci. Rep. 2013, 3, 1998.

23

Ai, K. L.; Liu, Y. L.; Liu, J. H.; Yuan, Q. H.; He, Y. Y.; Lu, L. H. Large-scale synthesis of Bi2S3 nanodots as a contrast agent for in vivo X-ray computed tomography imaging. Adv. Mater. 2011, 23, 4886–4891.

24

Kinsella, J. M.; Jimenez, R. E.; Karmali, P. P.; Rush, A. M.; Kotamraju, V. R.; Gianneschi, N. C.; Ruoslahti, E.; Stupack, D.; Sailor, M. J. X-ray computed tomography imaging of breast cancer by using targeted peptide-labeled bismuth sulfide nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 12308–12311.

25

Rabin, O.; Perez, J. M.; Grimm, J.; Wojtkiewicz, G.; Weissleder, R. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat. Mater. 2006, 5, 118–122.

26

Chang, K.; Lou, W. -K. Helical quantum states in HgTe quantum dots with inverted band structures. Phys. Rev. Lett. 2011, 106, 206802.

27

Kim, N.; Lee, P.; Kim, Y.; Kim, J. S.; Kim, Y.; Noh, D. Y.; Yu, S. U.; Chung, J.; Kim, K. S. Persistent topological surface state at the interface of Bi2Se3 film grown on patterned graphene. ACS Nano 2014, 8, 1154–1160.

28

Liu, H. W.; Jiang, H.; Sun, Q. -F.; Xie, X. C. Dephasing effect on backscattering of helical surface states in 3D topological insulators. Phys. Rev. Lett. 2014, 113, 046805.

29

Moore, J. E. The birth of topological insulators. Nature 2010, 464, 194–198.

30

Reijnders, A. A.; Tian, Y.; Sandilands, L. J.; Pohl, G.; Kivlichan, I. D.; Zhao, S. Y. F.; Jia, S.; Charles, M. E.; Cava, R. J.; Alidoust, N.; et al. Optical evidence of surface state suppression in Bi-based topological insulators. Phys. Rev. B 2014, 89, 075138.

31

Wang, L. -L.; Huang, M. L.; Thimmaiah, S.; Alam, A.; Bud'ko, S. L.; Kaminski, A.; Lograsso, T. A.; Canfield, P.; Johnson, D. D. Native defects in tetradymite Bi2(TexSe3–x) topological insulators. Phys. Rev. B 2013, 87, 125303.

32

Ghaemi, P.; Mong, R. S. K.; Moore, J. E. In-plane transport and enhanced thermoelectric performance in thin films of the topological insulators Bi2Te3 and Bi2Se3. Phys. Rev. Lett. 2010, 105, 166603.

33

Ghosh, S.; Dutta, S.; Gomes, E.; Carroll, D.; D'Agostino, R.; Olson, J.; Guthold, M.; Gmeiner, W. H. Increased heating efficiency and selective thermal ablation of malignant tissue with DNA-encased multiwalled carbon nanotubes. ACS Nano 2009, 3, 2667–2673.

34

Chen, J. Y.; Yang, M. X.; Zhang, Q.; Cho, E. C.; Cobley, C. M.; Kim, C.; Glaus, C.; Wang, L. H. V.; Welch, M. J.; Xia, Y. N. Gold nanocages: A novel class of multifunctional nanomaterials for theranostic applications. Adv. Funct. Mater. 2010, 20, 3684–3694.

35

Chen, H. J.; Shao, L.; Ming, T.; Sun, Z. H.; Zhao, C. M.; Yang, B. C.; Wang, J. F. Understanding the photothermal conversion efficiency of gold nanocrystals. Small 2010, 6, 2272–2280.

36

Kim, D.; Jeong, Y. Y.; Jon, S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano 2010, 4, 3689–3696.

37

Roper, D. K.; Ahn, W.; Hoepfner, M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 2007, 111, 3636–3641.

38

Alkilany, A. M.; Nagaria, P. K.; Hexel, C. R.; Shaw, T. J.; Murphy, C. J.; Wyatt, M. D. Cellular uptake and cytotoxicity of gold nanorods: Molecular origin of cytotoxicity and surface effects. Small 2009, 5, 701–708.

39

Loo, C.; Lin, A.; Hirsch, L.; Lee, M. -H.; Barton, J.; Halas, N. J.; West, J.; Drezek, R. Nanoshell-enabled photonics-based imaging and therapy of cancer. Technol. Cancer Res. Treat. 2004, 3, 33–40.

40

Li, H.; Cao, J.; Zheng, W. S.; Chen, Y. L.; Wu, D.; Dang, W. H.; Wang, K.; Peng, H. L.; Liu, Z. F. Controlled synthesis of topological insulator nanoplate arrays on mica. J. Am. Chem. Soc. 2012, 134, 6132–6135.

41

Chen, C. -C.; Herhold, A. B.; Johnson, C. S.; Alivisatos, A. P. Size dependence of structural metastability in semiconductor nanocrystals. Science 1997, 276, 398–401.

42

Son, D. H.; Hughes, S. M.; Yin, Y. D.; Alivisatos, A. P. Cation exchange reactions in ionic nanocrystals. Science 2004, 306, 1009–1012.

43

Ivanov, S. A.; Piryatinski, A.; Nanda, J.; Tretiak, S.; Zavadil, K. R.; Wallace, W. O.; Werder, D.; Klimov, V. I. Type-Ⅱ core/shell CdS/ZnSe nanocrystals: Synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 2007, 129, 11708–11719.

44

Chen, C. -Y.; Cheng, C. -T.; Lai, C. -W.; Hu, Y. -H.; Chou, P. -T.; Chou, Y. -H.; Chiu, H. -T. Type-Ⅱ CdSe/CdTe/ZnTe (core–shell–shell) quantum dots with cascade band edges: The separation of electron (at CdSe) and hole (at ZnTe) by the CdTe layer. Small 2005, 1, 1215–1220.

45

Allione, M.; Ballester, A.; Li, H. B.; Comin, A.; Movilla, J. L.; Climente, J. I.; Manna, L.; Moreels, I. Two-photon-induced blue shift of core and shell optical transitions in colloidal CdSe/CdS quasi-type Ⅱ quantum rods. ACS Nano 2013, 7, 2443–2452.

46

Zhu, H. M.; Song, N. H.; Lian, T. Q. Wave function engineering for ultrafast charge separation and slow charge recombination in type-Ⅱ core/shell quantum dots. J. Am. Chem. Soc. 2011, 133, 8762–8771.

47

Balet, L. P.; Ivanov, S. A.; Piryatinski, A.; Achermann, M.; Klimov, V. I. Inverted core/shell nanocrystals continuously tunable between type-Ⅰ and type-Ⅱ localization regimes. Nano Lett. 2004, 4, 1485–1488.

48

Zhang, Y.; He, K.; Chang, C. -Z.; Song, C. -L.; Wang, L. -L.; Chen, X.; Jia, J. -F.; Fang, Z.; Dai, X.; Shan, W. -Y.; et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 2010, 6, 584–588.

49

Vargas, A.; Basak, S.; Liu, F. Z.; Wang, B. K.; Panaitescu, E.; Lin, H.; Markiewicz, R.; Bansil, A.; Kar, S. The changing colors of a quantum-confined topological insulator. ACS Nano 2014, 8, 1222–1230.

50

Smith, A. M.; Mohs, A. M.; Nie, S. M. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 2009, 4, 56–63.

51

Kim, S.; Fisher, B.; Eisler, H. J.; Bawendi, M. Type-Ⅱ quantum dots: CdTe/CdSe(core/shell) and CdSe/ZnTe(core/shell) heterostructures. J. Am. Chem. Soc. 2003, 125, 11466–11467.

52

Bang, J.; Park, J.; Lee, J. H.; Won, N.; Nam, J.; Lim, J.; Chang, B. Y.; Lee, H. J.; Chon, B.; Shin, J.; et al. ZnTe/ZnSe (core/shell) type-Ⅱ quantum dots: Their optical and photovoltaic properties. Chem. Mater. 2010, 22, 233–240.

53

Chang, K.; Xia, J. -B. Spatially separated excitons in quantum-dot quantum well structures. Phys. Rev. B 1998, 57, 9780–9786.

54

Nemchinov, A.; Kirsanova, M.; Hewa-Kasakarage, N. N.; Zamkov, M. Synthesis and characterization of type-Ⅱ ZnSe/CdS core/shell nanocrystals. J. Phys. Chem. C 2008, 112, 9301–9307.

55

Oron, D.; Kazes, M.; Banin, U. Multiexcitons in type-Ⅱ colloidal semiconductor quantum dots. Phys. Rev. B 2007, 75, 035330.

File
12274_2014_629_MOESM1_ESM.pdf (577.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 July 2014
Revised: 27 October 2014
Accepted: 30 October 2014
Published: 28 April 2015
Issue date: May 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work has been partly supported by the National Basic Research Program of China (973 Program) No. 2011CB922204-2, and the National Natural Science Foundation of China (Nos. 11434010, 11147024, 11247025, 11304306, 11374002, and 61290303).

Return