Journal Home > Volume 8 , Issue 5

Nanotherapeutics has an increasing role in the treatment of diseases such as cancer. In photodynamic therapy (PDT) a therapeutically inactive photosensitizer compound is selectively activated by light to produce molecules capable of killing diseased cells and pathogens. A phototheranostic agent can be defined as a single nanoentity with the capabilities for targeted delivery, optical imaging and photodynamic treatment of a disease. Malignant cells, tissue and microbial etiologic agents can be effectively targeted by PDT. Photodynamic therapy is noninvasive, or minimally invasive, and has few side effects as damage to healthy tissue is minimized and the killing effect is localized. Various forms of cancer, acne and other diseases may be treated. The in vivo efficacy of photosensitizers is further improved by attaching them to nanostructures capable of targeting the diseased site. Such photosensitizer-functionalized nanostructures, or nanotherapeutics, allow site-specific delivery of imaging and therapeutic agents for improved phototheranostic performance. This review explores the potential applications of phototheranostic nanostructures in diagnosis and therapy.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Applications of phototheranostic nanoagents in photodynamic therapy

Show Author's information Jayeeta Bhaumik1( )Amit Kumar Mittal1Avik Banerjee2Yusuf Chisti3Uttam Chand Banerjee1( )
Department of Pharmaceutical Technology (Biotechnology)National Institute of Pharmaceutical Education and Research, Sector 67, S.A.SNagar160062India
Department of RadiologyDayanand Medical College and HospitalLudhiana141001India
School of EngineeringMassey University, Private Bag 11 222Palmerston NorthNew Zealand

Abstract

Nanotherapeutics has an increasing role in the treatment of diseases such as cancer. In photodynamic therapy (PDT) a therapeutically inactive photosensitizer compound is selectively activated by light to produce molecules capable of killing diseased cells and pathogens. A phototheranostic agent can be defined as a single nanoentity with the capabilities for targeted delivery, optical imaging and photodynamic treatment of a disease. Malignant cells, tissue and microbial etiologic agents can be effectively targeted by PDT. Photodynamic therapy is noninvasive, or minimally invasive, and has few side effects as damage to healthy tissue is minimized and the killing effect is localized. Various forms of cancer, acne and other diseases may be treated. The in vivo efficacy of photosensitizers is further improved by attaching them to nanostructures capable of targeting the diseased site. Such photosensitizer-functionalized nanostructures, or nanotherapeutics, allow site-specific delivery of imaging and therapeutic agents for improved phototheranostic performance. This review explores the potential applications of phototheranostic nanostructures in diagnosis and therapy.

Keywords: nanomedicine, photodynamic therapy, theranostics, phototheranostics, photosensitizers

References(252)

1

Detty, M. R. Photosensitisers for the photodynamic therapy of cancer and other diseases. Expert Opin. Ther. Pat. 2001, 11, 1849–1860.

2

Stockert, J. C.; Cañete, M.; Juarranz, A.; Villanueva, A.; Horobin, R. W.; Borrell, J. I.; Teixidó, J.; Nonell, S. Porphycenes: Facts and prospects in photodynamic therapy of cancer. Curr. Med. Chem. 2007, 14, 997–1026.

3

Bhojani, M. S.; Van Dort, M.; Rehemtulla, A.; Ross, B. D. Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol. Pharmaceutics 2010, 7, 1921–1929.

4

Janib, S. M.; Moses, A. S.; MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv Rev. 2010, 62, 1052–1063.

5

Kudinova, N. V.; Berezov, T. T. Photodynamic therapy of cancer: Search for ideal photosensitizer. Biochemistry (Moscow) 2010, 4, 95–103.

6

Rai, P.; Mallidi, S.; Zheng, X.; Rahmanzadeh, R.; Mir, Y.; Elrington, S.; Khurshid, A.; Hasan, T. Development and applications of photo-triggered theranostic agents. Adv. Drug Deliv Rev. 2010, 62, 1094–1124.

7

Fernandez-Fernandez, A.; Manchanda, R.; McGoron, A. J. Theranostic applications of nanomaterials in cancer: Drug delivery, image-guided therapy, and multifunctional platforms. Appl. Biochem. Biotechnol. 2011, 165, 1628–1651.

8

Kelkar, S. S.; Reineke, T. M. Theranostics: combining imaging and therapy. Bioconjugate Chem. 2011, 22, 1879–1903.

9

Kievit, F. M.; Zhang, M. Q. Cancer nanotheranostics: Improving imaging and therapy by targeted delivery across biological barriers. Adv. Mater. 2011, 23, H217–H247.

10

Lammers, T.; Aime, S.; Hennink, W. E.; Storm, G.; Kiessling, F. Theranostic nanomedicine. Acc. Chem. Res. 2011, 44, 1029–1038.

11

Choi, K. Y.; Liu, G.; Lee, S.; Chen, X. Y. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives. Nanoscale 2012, 4, 330–342.

12

Lim, C. K.; Heo, J.; Shin, S.; Jeong, K.; Seo, Y. H.; Jang, W. D.; Park, C. R.; Park, S. R.; Kim, S.; Kwon, I. C. Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett. 2012, 334, 176–187.

13

Melancon, M. P.; Stafford, R. J.; Li, C. Challenges to effective cancer nanotheranostics. J. Control. Release 2012, 164, 177–182.

14

Prabhu, P.; Patravale, V. The upcoming field of theranostic nanomedicine: An overview. J. Biomed. Nanotechnol. 2012, 8, 859–882.

15

Wang, S. Y.; Fan, W. Z.; Kim, G.; Hah, H. J.; Lee, Y. E.; Kopelman, R.; Ethirajan, M.; Gupta, A.; Goswami, L. N.; Pera, P.; Morgan, J.; Pandey R. K. Novel methods to incorporate photosensitizers into nanocarriers for cancer treatment by photodynamic therapy. Laser Surg. Med. 2011, 43, 686–695.

16

Shibu, E. S.; Hamada, M.; Murase, N.; Biju, V. Nanomaterials formulations for photothermal and photodynamic therapy of cancer. J. Photochem. Photobiol. C 2013, 15, 53–72.

17

Caldorera-Moore, M. E.; Liecty, W. B.; Peppas, N. A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Acc. Chem. Res. 2011, 44, 1061–1070.

18

Mura, S.; Couvreur, P. Nanotheranostics for personalized medicine. Adv. Drug Deliver. Rev. 2012, 64, 1394–1416.

19

Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 2013, 31, 346–356.

20

Frangioni, J. V. New technologies for human cancer imaging. J. Clin. Oncol. 2008, 26, 4012–4021.

21

Khdair, A.; Handa, H.; Mao, G. Z.; Panyam, J. Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. Eur. J. Pharm. Biopharm. 2009, 71, 214–222.

22

Allison, R. R.; Sibata, C. H. Oncologic photodynamic therapy photosensitizers: A clinical review. Photodiagn. Photodyn. 2010, 7, 61–75.

23

McCarthy, J. R.; Bhaumik, J.; Karver, M. R.; Erdem, S. S.; Weissleder, R. Targeted nanoagents for the detection of cancers. Mol. Oncol. 2010, 4, 511–528.

24

Coll, J. L. Cancer optical imaging using fluorescent nanoparticles. Nanomedicine 2011, 6, 7–10.

25

Lee, D. Y.; Li, K. C. P. Molecular theranostics: A primer for the imaging professional. Am. J. Roentgenol. 2011, 197, 318–324.

26

Lee, S. J.; Koo, H.; Lee, D. E.; Min, S.; Lee, S.; Chen, X. Y.; Choi, Y.; Leary, J. F.; Park, K.; Jeong, S. Y. et al. Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 2011, 32, 4021–4029.

27

Ogura, S. I.; Hagiya, Y.; Tabata, K.; Kamachi, T.; Okura, I. Improvement of tumor localization of photosensitizers for photodynamic therapy and its application for tumor diagnosis. Curr. Top. Med. Chem. 2012, 12, 176–184.

28

Guo, S. T.; Huang, L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol. Adv. 2014, 32, 778–788.

29

He, H. N.; David, A.; Chertok, B.; Cole, A.; Lee, K.; Zhang, J.; Wang, J. X.; Huang, Y. Z.; Yang, V. C. Magnetic nanoparticles for tumor imaging and therapy: A so-called theranostic system. Pharm. Res. 2013, 30, 2445–2458.

30

Pagonis, T. C.; Chen, J.; Fontana, C. R.; Devalapally, H.; Ruggiero, K.; Song, X. Q.; Foschi, F.; Dunham, J.; Skobe, Z.; Yamazaki, H. et al. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J. Endodont. 2010, 36, 322–328.

31

Wainwright, M.; Smalley, H.; Flint, C. The use of photosensitisers in acne treatment. J. Photochem. Photobiol. B 2011, 105, 1–5.

32

Nagata, J. Y.; Hioka, N.; Kimura, E.; Batistela, V. R.; Terada, R. S. S.; Graciano, A. X.; Baesso, M. L.; Hayacibara, M. F. Antibacterial photodynamic therapy for dental caries: Evaluation of the photosensitizers used and light source properties. Photodiagn. Photodyn. 2012, 9, 122–131.

33

Dastgheyb, S. S.; Eckmann, D. M.; Composto, R. J.; Hickok, N. J. Photo-activated porphyrin in combination with antibiotics: Therapies against Staphylococci. J. Photochem. Photobiol. B 2013, 129, 27–35.

34

Sperandio, F. F.; Huang, Y. Y.; Hamblin, M. R. Antimicrobial photodynamic therapy to kill Gram-negative bacteria. Recent Pat. Anti-Infect. Drug Discovery 2013, 8, 108–120.

35

Yildirim, C.; Karaarslan, E. S.; Ozsevik, S.; Zer, Y.; Sari, T.; Usumez, A. Antimicrobial efficiency of photodynamic therapy with different irradiation durations. Eur. J. Dent. 2013, 7, 469–473.

36

Rockson, S. G.; Lorenz, D. P.; Cheong, W. F.; Woodburn, K. W. Photoangioplasty: An emerging clinical cardiovascular role for photodynamic therapy. Circulation 2000, 102, 591–596.

37

Kossodo, S.; LaMuraglia, G. M. Clinical potential of photodynamic therapy in cardiovascular disorders. Am. J. Cardiovasc. Drugs 2001, 1, 15–21.

38

Chou, T. M.; Woodburn, K. W.; Cheong, W. F.; Lacy, S. A.; Sudhir, K.; Adelman, D. C.; Wahr, D. Photodynamic therapy: Applications in atherosclerotic vascular disease with motexafin lutetium. Catheter Cardio. Inte. 2002, 57, 387–394.

39

McCarthy, J. R. Multifunctional agents for concurrent imaging and therapy in cardiovascular disease. Adv. Drug Deliv. Rev. 2010, 62, 1023–1030.

40

McCarthy, J. R. Nanomedicine and cardiovascular disease. Curr. Cardiovasc. Imaging Rep. 2010, 3, 42–49.

41

Drakopoulou, M.; Toutouzas, K.; Michelongona, A.; Tousoulis, D.; Stefanadis, C. Vulnerable plaque and inflammation: Potential clinical strategies. Curr. Pharm. Design 2011, 17, 4190–4209.

42

Xia, L.; Kong, X. G.; Liu, X. M.; Tu, L. P.; Zhang, Y. L.; Chang, Y. L.; Liu, K.; Shen, D. Z.; Zhao, H. Y.; Zhang, H. An upconversion nanoparticle—Zinc phthalocyanine based nanophotosensitizer for photodynamic therapy. Biomaterials 2014, 35, 4146–4156.

43

Guo, M.; Mao, H. J.; Li, Y. L.; Zhu, A. J.; He, H.; Yang, H.; Wang, Y. Y.; Tian, X.; Ge, C. C.; Peng, Q. L. et al. Dual imaging-guided photothermal/photodynamic therapy using micelles. Biomaterials 2014, 35, 4656–4666.

44

Chen, Q.; Wang, C.; Cheng, L.; He, W. W.; Cheng, Z. P.; Liu, Z. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 2014, 35, 2915–2923.

45

Seo, S. H.; Kim, B. M.; Joe, A.; Han, H. W.; Chen, X. Y.; Cheng, Z.; Jang, E. S. NIR-light-induced surface-enhanced Raman scattering for detection and photothermal/photodynamic therapy of cancer cells using methylene blue-embedded gold nanorod@SiO2 nanocomposites. Biomaterials 2014, 35, 3309–3318.

46

Gollavelli, G.; Ling, Y. C. Magnetic and fluorescent graphene for dual modal imaging and single light induced photothermal and photodynamic therapy of cancer cells. Biomaterials 2014, 35, 4499–4507.

47

Ren, Y.; Wang, R. R.; Liu, Y.; Guo, H.; Zhou, X.; Yuan, X. B.; Liu, C. Y.; Tian, J. G.; Yin, H. F.; Wang, Y. S. et al. A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 2014, 35, 2462–2470.

48

Kang, T.; Gao, X. L.; Hu, Q. Y.; Jiang, D.; Feng, X. Y.; Zhang, X.; Song, Q. X.; Yao, L.; Huang, M.; Jiang, X. G. et al. iNGR-modified PEG-PLGA nanoparticles that recognize tumor vasculature and penetrate gliomas. Biomaterials 2014, 35, 4319–4332.

49

Wang, B. K.; Wang, J. H.; Liu, Q.; Huang, H.; Chen, M.; Li, K. Y.; Li, C. Z.; Yu, X. F.; Chu, P. K. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies. Biomaterials 2014, 35, 1954–1966.

50

Sherlock, S. P.; Dai, H. J. Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res. 2011, 4, 1248–1260.

51

Robinson, J. T.; Welsher, K. S.; Tabakman, M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779–793.

52

Liu, L. P.; Wang, G. M.; Li, Y.; Li, Y. D.; Zhang, J. Z. CdSe quantum dot-sensitized Au/TiO2 hybrid mesoporous films and their enhanced photoelectrochemical performance. Nano Res. 2011, 4, 249–258.

53

Wang, D.; Li, Y. G.; Hasin, P.; Wu, Y. Y. Preparation, characterization, and electrocatalytic performance of graphene-methylene blue thin films. Nano Res. 2011, 4, 124–130.

54

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325–337.

55

Wang, X.; Yang, C. X.; Chen, J. T.; Yan, X. P. A dual-targeting upconversion nanoplatform for two-color fluorescence imaging-guided photodynamic therapy. Anal. Chem. 2014, 86, 3263–3267.

56

Topete, A.; Alatorre-Meda, M.; Iglesias, P.; Villar-Alvarez, E. M.; Barbosa, S.; Costoya, J. A. Taboada, P.; Mosquera, V. Fluorescent drug-loaded, polymeric-based, branched gold nanoshells for localized multimodal therapy and imaging of tumoral cells. ACS Nano 2014, 8, 2725–2738.

57

Zhang, Y. R.; Pang L.; Ma, C.; Tu, Q.; Zhang, R.; Saeed, E.; Mahmoud, A. E.; Wang, J. Y. Small molecule-initiated light-activated semiconducting polymer dots: An integrated nanoplatform for targeted photodynamic therapy and imaging of cancer cells. Anal. Chem. 2014, 86, 3092–3099.

58

Lee, S.; Koo, H.; Na, J. H.; Han, S. J.; Min, H. S.; Lee, S. J.; Kim, S. H.; Yun, S. H.; Jeong, S. Y.; Kwon, I. C. et al. Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano 2014, 8, 2048–2063.

59

Curry, T.; Kopelman, R.; Shilo, M.; Popovtzer, R. Multifunctional theranostic gold nanoparticles for targeted CT imaging and photothermal therapy. Contrast Media Mol. I. 2014, 9, 53–61.

60

Funkhouser, J. Reintroducing pharma: Theranostic revolution. Curr. Drug Discov. 2002, 2, 17–19.

61

Whitesides, G. M. The 'right' size in nanobiotechnology. Nat. Biotechnol. 2003, 21, 1161–1165.

62

Sumer, B.; Gao, J. M. Theranostic nanomedicine for cancer. Nanomedicine 2008, 3, 137–140.

63

Iyer, A. K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today 2006, 11, 812–818.

64

McCarthy, J. R. The future of theranostic nanoagents. Nanomedicine 2009, 4, 693–695.

65

Dhar, S.; Liu, Z.; Thomale, J.; Dai, H. J.; Lippard, S. J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 2008, 130, 11467–11476.

66

Bhirde, A. A.; Patel, V.; Gavard, J.; Zhang, G. F.; Sousa, A. A.; Masedunskas, A.; Leapman, R. D.; Weigert, R.; Gutkind, J. S.; Rusling, J. F. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano 2009, 3, 307–316.

67

Shvedova, A. A.; Kagan, V. E. The role of nanotoxicology in realizing the 'helping without harm' paradigm of nanomedicine: Lessons from studies of pulmonary effects of single-walled carbon nanotubes. J. Intern. Med. 2010, 267, 106–118.

68

Richard, C.; Doan, B. T.; Beloeil, J. C.; Bessodes, M.; Tóth, É.; Scherman, D. Noncovalent functionalization of carbon nanotubes with amphiphilic Gd3+ chelates: Toward powerful T1 and T2 MRI contrast agents. Nano Lett. 2008, 8, 232–236.

69

McDevitt, M. R.; Chattopadhyay, D.; Kappel, B. J.; Jaggi, J. S.; Schiffman, S. R.; Antczak, C.; Njardarson, J. T.; Brentjens, R.; Scheinberg, D. A. Tumor targeting with antibody functionalized, radiolabeled carbon nanotubes. J. Nucl. Med. 2007, 48, 1180–1189.

70

Liu, Z.; Cai, W. B.; He, L. N.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

71

Dennany, L.; Sherrell, P.; Chen, J.; Innis, P. C.; Wallace, G. G.; Minett, A. I. EPR characterisation of platinum nanoparticle functionalised carbon nanotube hybrid materials. Phys. Chem. Chem. Phys. 2010, 12, 4135–4141.

72

Malam, Y.; Loizidou, M.; Seifalian, A. M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009, 30, 592–599.

73

Ponce, A. M.; Vujaskovic, Z.; Yuan, F.; Needham, D.; Dewhirst, M. W. Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia 2006, 22, 205–213.

74

Chen, Q.; Tong, S.; Dewhirst, M. W.; Yuan, F. Targeting tumor microvessels using doxorubicin encapsulated in a novel thermosensitive liposome. Mol. Cancer Ther. 2004, 3, 1311–1317.

75

Miele, E.; Spinelli, G. P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int. J. Nanomed. 2009, 4, 99–105.

76

Gopalakrishnan, G.; Danelon, C.; Izewska, P.; Prummer, M.; Bolinger, P. Y.; Geissbühler, I.; Demurtas, D.; Dubochet, J.; Vogel, H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew. Chem. Int. Ed. 2006, 45, 5478–5483.

77

Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 2005, 307, 538–544.

78

Yao, J.; Larson, D. R.; Vishwasrao, H. D.; Zipfel, W. R.; Webb, W. W. Blinking and nonradiant dark fraction of water soluble quantum dots in aqueous solution. Proc. Natl. Acad. Sci. USA 2005, 102, 14284–14289.

79

Bagalkot, V.; Zhang, L. F.; Levy-Nissenbaum, E.; Jon, S.; Kantoff, P. W.; Langer, R.; Farokhzad, O. C. Quantum dot–aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007, 7, 3065–3070.

80

Biju, V.; Mundayoor, S.; Omkumar, R. V.; Anas, A.; Ishikawa, M. Bioconjugated quantum dots for cancer research: Present status, prospects and remaining issues. Biotechnol. Adv. 2010, 28, 199–213.

81

Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: Potential cancer theranostics. J. Mater. Chem. 2009, 19, 1252–1257.

82

Senpan, A.; Caruthers, S. D.; Rhee, I.; Mauro, N. A.; Pan, D.; Hu, G.; Scott, M. J.; Fuhrhop, R. W.; Gaffney, P. J.; Wickline, S. A. et al. Conquering the dark side: Colloidal iron oxide nanoparticles. ACS Nano 2009, 3, 3917–3926.

83

Xie, J.; Chen, K.; Huang, J.; Lee, S.; Wang, J. H.; Gao, J. H.; Li, X. G.; Chen. X. Y. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials 2010, 31, 3016–3022.

84

Santra, S.; Kaittanis, C.; Grimm, J.; Perez, J. M. Drug/dye-loaded, multifunctional iron oxide nanoparticles for combined targeted cancer therapy and dual optical/magnetic resonance imaging. Small 2009, 5, 1862–1868.

85

Das, M.; Mishra, D.; Dhak, P.; Gupta, S.; Maiti, T. K.; Basak, A.; Pramanik, P. Biofunctionalized, phosphonate-grafted, ultrasmall iron oxide nanoparticles for combined targeted cancer therapy and multimodal imaging. Small 2009, 5, 2883–2893.

86

Hilger, I.; Frühauf, K.; Andrä, W.; Hiergeist, R.; Hergt, R.; Kaiser, W. A. Heating potential of iron oxides for therapeutic purposes in interventional radiology. Acad. Radiol. 2002, 9, 198–202.

87

Rupp, R.; Rosenthal, S. L.; Stanberry, L. R. VivagelTM (SPL7013 gel): A candidate dendrimer–microbicide for the prevention of HIV and HSV infection. Int. J. Nanomed. 2007, 2, 561–566.

88

Thomas, T. P.; Shukla, R.; Kotlyar, A.; Kukowska-Latallo, J.; Baker, J. R. Dendrimer based tumor cell targeting of fibroblast growth factor-1. Bioorg. Med. Chem. Lett. 2010, 20, 700–703.

89

Padilla De Jesús, O. L.; Ihre, H. R.; Gagne, L.; Fréchet, J. M.; Szoka, F. C. Polyester dendritic systems for drug delivery applications: In vitro and in vivo evaluation. Bioconjugate Chem. 2002, 13, 453–461.

90

Lee, C. C.; Gillies, E. R.; Fox, M. E.; Guillaudeu, S. J.; Fréchet, J. M.; Dy, E. E.; Szoka, F. C. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl. Acad. Sci. USA 2006, 103, 16649–16654.

91

Guillaudeu, S. J.; Fox, M. E.; Haidar, Y. M.; Dy, E. E.; Szoka, F. C.; Fréchet, J. M. PEGylated dendrimers with core functionality for biological applications. Bioconjugate Chem. 2008, 19, 461–469.

92

Wiener, E. C.; Brechbiel, M. W.; Brothers, H.; Magin, R. L.; Gansow, O. A.; Tomalia, D. A.; Lauterbur, P. C. Dendrimer-based metal-chelates: A new class of magnetic resonance imaging contrast agents. Magn. Reson. Med. 1994, 31, 1–8.

93

Konda, S. D.; Aref, M.; Wang, S.; Brechbiel, M.; Wiener, E. C. Specific targeting of folate–dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts. Magn. Reson. Mater. Phys. Biol. Med. 2001, 12, 104–113.

94

Singh, P.; Gupta, U.; Asthana, A.; Jain, N. K. Folate and folate–PEG–PAMAM dendrimers: Synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjugate Chem. 2008, 19, 2239–2252.

95

Lee, C. C.; MacKay, J. A.; Fréchet, J. M.; Szoka, F. C. Designing dendrimers for biological applications. Nat. Biotechnol. 2005, 23, 1517–1526.

96

Prakash, P.; Gnanaprakasam, P.; Emmanuel, R.; Arokiyaraj, S.; Saravanan, M. Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Colloid Surf. B-Biointerfaces 2013, 108, 255–259.

97

Mohan, S.; Oluwafemi, O. S.; George, S. C.; Jayachandran, V. P.; Lewu, F. B.; Songca, S.; Kalarikkai, N.; Thomas, S. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties. Carbohydr. Polym. 2014, 106, 469–474.

98

MubarakAli, D.; Thajuddin, N.; Jeganathan, K.; Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloid Surf. B-Biointerfaces 2011, 85, 360–365.

99

Ankanna, S.; Prasad, T. N. V. K. V.; Elumalai, E. K.; Savithramma, N. Production of biogenic silver nanoparticles using Boswellia ovalifoliolata stem bark. Dig. J. Nanomater. Biostruct. 2010, 5, 369–372.

100

Durán, N.; Marcato, P. D.; De Souza, G. I. H.; Alves, O. L.; Esposito, E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208.

101

Huang, H. Z.; Yang, X. R. Synthesis of polysaccharide-stabilized gold and silver nanoparticles: A green method. Carbohydr. Res. 2004, 339, 2627–2631.

102

Jacob, S. J. P.; Finub, J.; Narayanan, A. Synthesis of silver nanoparticles using Piper longum leaf extracts and its cytotoxic activity against Hep-2 cell line. Colloid Surf. B-Biointerfaces 2011, 91, 212–214.

103

Kaler, A.; Nankar, R.; Bhattacharyya, M. S.; Banerjee, U. C. Extracellular biosynthesis of silver nanoparticles using aqueous extract of Candida viswanathii. J Bionanosci. 2011, 5, 53–58.

104

Mittal, A. K.; Bhaumik, J.; Kumar, S.; Banerjee, U. C. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci. 2014, 415, 39–47.

105

Mittal, A. K.; Kaler, A.; Banerjee, U. C. Free radical scavenging and antioxidant activity of silver nanoparticles synthesized from flower extract of Rhododendron dauricum. Nano Biomed. Eng. 2012, 4, 118–124.

106

Kouvaris, P.; Delimitis, A.; Zaspalis, V.; Papadopoulos, D.; Tsipas, S. A.; Michailidis, N. Green synthesis and characterization of silver nanoparticles produced using Arbiutus Unedo leaf extract. Mater. Lett. 2012, 76, 18–20.

107

Njagi, E. C.; Huang, H.; Stafford, L.; Genuino, H.; Galindo, H. M.; Collins, J. B.; Hoag, G. E.; Suib, S. L. Biosynthesis of iron and silver nanoparticles at room temperature using aqueous sorghum bran extracts. Langmuir 2011, 27, 264–271.

108

Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.

109

Safaepour, M.; Shahverdi, A. R.; Shahverdi, H. R.; Khorramizadeh, M. R.; Gohari, A. R. Green synthesis of small silver nanoparticles using geraniol and its cytotoxicity against Fibrosarcoma–Wehi 164. Avicenna J. Med. Biotechnol. 2009, 1, 111–115.

110

Parida, U. K.; Bindhani, B. K.; Nayak, P. Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J. Nano Sci. Eng. 2011, 1, 93–98.

111

Vigderman, L.; Zubarev, E. R. Therapeutic platforms based on gold nanoparticles and their covalent conjugates with drug molecules. Adv. Drug Deliv. Rev. 2012, 65, 663–676.

112

Zhao, T. T.; Yu, K.; Li, L.; Zhang, T. S.; Guan, Z. P.; Gao, N. Y.; Yuan, P. Y.; Li, S.; Yao, S. Q.; Xu, Q. H. et al. Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two photon imaging and photodynamic therapy. ACS Appl. Mater. Interfaces 2014, 6, 2700–2708.

113

Ghodake, G.; Deshpande, N.; Lee, Y. P.; Jin, E. S. Pear fruit extract-assisted room-temperature biosynthesis of gold nanoplates. Colloid Surf. B-Biointerfaces 2010, 75, 584–589.

114

Han, G.; Ghosh, P.; Rotello, V. M. Functionalized gold nanoparticles for drug delivery. Nanomedicine 2007, 2, 113–123.

115

Kumar, V. G.; Gokavarapu, S. D.; Rajeswari, A.; Dhas, T. S.; Karthick, V.; Kapadia, Z.; Shrestha, T.; Barathy, I. A.; Roy, A.; Sinha, S. Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. Colloid Surf. B-Biointerfaces 2011, 87, 159–163.

116

Liu, Q. J.; Liu, H. F.; Yuan, Z. L.; Wei, D. W.; Ye, Y. Z. Evaluation of antioxidant activity of chrysanthemum extracts and tea beverages by gold nanoparticles-based assay. Colloid Surf. B-Biointerfaces 2012, 92, 348–352.

117

Marshall, A. T.; Haverkamp, R. G.; Davies, C. E.; Parsons, J. G.; Gardea-Torresdey, J. L.; van Agterveld, D. Accumulation of gold nanoparticles in Brassic juncea. Int. J. Phytoremed. 2007, 9, 197–206.

118

Narayanan, K. B.; Sakthivel, N. Phytosynthesis of gold nanoparticles using leaf extract of Coleus amboinicus Lour. Mater. Charact. 2010, 61, 1232–1238.

119

Raghunandan, D.; Basavaraja, S.; Mahesh, B.; Balaji, S.; Manjunath, S.; Venkataraman, A. Biosynthesis of stable polyshaped gold nanoparticles from microwave-exposed aqueous extracellular anti-malignant guava (Psidium guajava) leaf extract. Nanobiotechnol. 2009, 5, 34–41.

120

Singaravelu, G.; Arockiamary, J. S.; Kumar, V. G.; Govindaraju, K. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloid Surf. B-Biointerfaces 2007, 57, 97–101.

121

Ankamwar, B. Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. Eur. J. Chem. 2010, 7, 1334–1339.

122

Arulkumar, S.; Sabesan, M. Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int. Res. Pharm. Sci. 2010, 1, 417–420.

123

Castro, L.; Luisa Blázquez, M.; Muñoz, J. A.; González, F.; García-Balboa, C.; Ballester, A. Biosynthesis of gold nanowires using sugar beet pulp. Process Biochem. 2011, 46, 1076–1082.

124

Bahram, M.; Hoseinzadeh, F.; Farhadi, K.; Saadat, M.; Najafi-Moghaddam, P.; Afkhami, A. Synthesis of gold nanoparticles using pH-sensitive hydrogel and its application for colorimetric determination of acetaminophen, ascorbic acid and folic acid. Colloid. Surface A 2014, 441, 517–524.

125

Ferreira, E. B.; Gomes, J. F.; Tremiliosi-Filho, G.; Gasparotto, L. H. S. One-pot eco-friendly synthesis of gold nanoparticles by glycerol in alkaline medium: Role of synthesis parameters on the nanoparticles characteristics. Mater. Res. Bull. 2014, 55, 131–136.

126

Singh, V.; Khullar, P.; Dave, P. N.; Kaura, A.; Bakshi, M. S.; Kaur, G. pH and thermo-responsive tetronic micelles for the synthesis of gold nanoparticles: Effect of physiochemical aspects of tetronics. Phys. Chem. Chem. Phys. 2014, 16, 4728–4739.

127

Medina, C.; Santos-Martinez, M. J.; Radomski, A.; Corrigan, O. I.; Radomski, M. W. Nanoparticles: Pharmacological and toxicological significance. Brit. J. Pharmacol. 2007, 150, 552–558.

128

Adiseshaiah, P. P.; Hall, J. B.; McNeil, S. E. Nanomaterial standards for efficacy and toxicity assessment. WI RES. Nanomed. Nanobi. 2010, 2, 99–112.

129

Tinkle, S. S. Maximizing safe design of engineered nanomaterials: The NIH and NIEHS research perspective. WIRES. Nanomed. Nanobio. 2010, 2, 88–98.

130

Aime, S.; Castelli, D. D.; Crich, S. G.; Gianolio, E.; Terreno, E. Pushing the sensitivity envelope of lanthanide-based magnetic resonance imaging (MRI) contrast agents for molecular imaging applications. Acc. Chem. Res. 2009, 42, 822–831.

131

Lin, M. M.; Kim, D. K.; El Haj, A. J.; Dobson, J. Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE T. Nanobiosci. 2008, 7, 298–305.

132

Lin, W. B.; Hyeon, T.; Lanza, G. M.; Zhang, M. Q.; Meade, T. J. Magnetic nanoparticles for early detection of cancer by magnetic resonance imaging. MRS Bull. 2009, 34, 441–448.

133

Hamoudeh, M.; Kamleh, M. A.; Diab, R.; Fessi, H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv. Drug Deliver Rev. 2008, 60, 1329–1346.

134

Dancey, G.; Begent, R. H.; Meyer, T. Imaging in targeted delivery of therapy to cancer. Target. Oncol. 2009, 4, 201–217.

135

Ting, G.; Chang, C. H.; Wang, H. E. Cancer nanotargeted radiopharmaceuticals for tumor imaging and therapy. Anticancer Res. 2009, 29, 4107–4118.

136

Xing, Y.; Rao, J. H. Quantum dot bioconjugates for in vitro diagnostics & in vivo imaging. Cancer Biomark. 2008, 4, 307–319.

137

Santra, S.; Dutta, D.; Walter, G. A.; Moudgil, B. M. Fluorescent nanoparticle probes for cancer imaging. Technol. Cancer Res. T. 2005, 4, 593–602.

138

Jiang, S.; Gnanasammandhan, M. K.; Zhang, Y. Optical imaging-guided cancer therapy with fluorescent nanoparticles. J. R. Soc. Interface 2010, 7, 3–18.

139

Dayton, P. A.; Zhao, S.; Bloch, S.H.; Schumann, P.; Penrose, K.; Matsunaga, T. O.; Zutshi, R.; Doinikov, A.; Ferrara, K. M. Application of ultrasound to selectively localize nanodroplets for targeted imaging and therapy. Mol. Imaging 2006, 5, 160–174.

140

Rapoport, N.; Gao, Z. G.; Kennedy, A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J. Natl. Cancer I. 2007, 99, 1095–1106.

141

Wang, K.; Wang, K.; Li, W.; Huang, T.; Li, R.; Wang, D. Characterizing breast cancer xenograft epidermal growth factor receptor expression by using nearinfrared optical imaging. Acta Radiol. 2009, 50, 1095–1103.

142

Kelly, K. A.; Setlur, S. R.; Ross, R.; Anbazhagan, R.; Waterman, P.; Rubin, M. A.; Weissleder, R. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res. 2008, 68, 2286–2291.

143

Chen, T. J.; Cheng, T. H.; Chen, C. Y.; Hsu, S. C.; Cheng, T. L.; Liu, G. C.; Wang, Y. M. Targeted herceptine-dextran iron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. J. Biol. Inorg. Chem. 2009, 14, 253–260.

144

Demos, S. M.; Onyuksel, H.; Gilbert, J.; Roth, S. I.; Kane, B.; Jungblut, P.; Pinto, J. V.; Mcpherson, D. D.; Klegerman, M. E. In vitro targeting of antibody-conjugated echogenic liposomes for site-specific ultrasonic image enhancement, J. Pharm. Sci. 1997, 86, 167–171.

145

Zalutsky, M. R.; Reardon, D. A.; Pozzi, O. R.; Vaidyanathan, G.; Bigner, D. D. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl. Med. Biol. 2007, 34, 779–785.

146

Beer, A. J.; Schwaiger, M. Imaging of integrin alphavbeta3 expression. Cancer Metast. Rev. 2008, 27, 631–644.

147

Bidwell, G. L.; Fokt, I.; Priebe, W.; Raucher, D. Development of elastin-like polypeptide for thermally targeted delivery of doxorubicin. Biochem. Pharmacol. 2007, 73, 620–631.

148

Kobayashi, H.; Sato, N.; Saga, T.; Nakamoto, Y.; Ishimori, T.; Toyama, S.; Togashi, K.; Konishi, J.; Brechbiel, M. W. Monoclonal antibody–dendrimer conjugates enable radiolabeling of antibody with markedly high specific activity with minimal loss of immunoreactivity. Eur. J. Nucl. Med. 2000, 27, 1334–1339.

149

Kobayashi, H.; Wu, C. C.; Kim, M. K.; Paik, C. H.; Carrasquillo, J. A.; Brechbiel, M. W. Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled dendrimer-1B4M-DTPA and its conjugation with anti-Tac monoclonal antibody. Bioconjug. Chem. 1999, 10, 103–111.

150

Cheng, Z.; Wu, Y.; Xiong, Z.; Gambhir, S. S.; Chen, X. Nearinfrared fluorescent RGD peptides for optical imaging of integrin alphavbeta3 expression in living mice. Bioconjug. Chem. 2005, 16, 1433–1441.

151

Ellington, A. D.; Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 1990, 346, 818–822.

152

Tuerk, C.; Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990, 249, 505–510.

153

Farokhzad, O. C.; Karp, J. M.; Langer, R. Nanoparticle–aptamer bioconjugates for cancer targeting. Expert Opin. Drug Deliv. 2006, 3, 311–324.

154

Levy-Nissenbaum, E.; Radovic-Moreno, A. F.; Wang, A. Z.; Langer, R.; Farokhzad, O. C. Nanotechnology and aptamers: Applications in drug delivery. Trends Biotechnol. 2008, 26, 442–449.

155

Guo, K. T.; Paul, A.; Schichor, C.; Ziemer, G.; Wendel, H. P. CELL-SELEX: Novel perspectives of aptamer-based therapeutics. Int. J. Mol. Sci. 2008, 9, 668–678.

156

Pala, K.; Serwotka, A.; Jeleń, F.; Jakimowicz, P.; Otlewski, J. Tumor-specific hyperthermia with aptamer-tagged superparamagnetic nanoparticles. Int. J. Nanomed. 2014, 9, 67–76.

157

Choi, S. K.; Thomas, T.; Li, M. H.; Kotlyar, A.; Desai, A.; Baker, J. R. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem. Commun. 2010, 46, 2632–2634.

158

Kularatne, S. A.; Low, P. S. Targeting of nanoparticles: Folate receptor. Methods Mol. Biol. 2010, 624, 249–265.

159

Low, P. S.; Kularatne, S. A. Folate-targeted therapeutic and imaging agents for cancer. Curr. Opin. Chem. Biol. 2009, 13, 256–262.

160

Zhang, H. L.; Ma, Y.; Sun, X. L. Recent developments in carbohydrate-decorated targeted drug/gene delivery. Med. Res. Rev. 2010, 30, 270–289.

161

Kuo, W. S.; Chang, C. N.; Chang, Y. T.; Yeh, C. S. Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem. Commun. 2009, 4853–4855.

162

Záruba, K.; Králová, J.; Rezanka, P.; Poucková, P.; Veverková, L.; Král, V. Modified porphyrin–brucine conjugated to gold nanoparticles and their application in photodynamic therapy. Org. Biomol. Chem. 2010, 8, 3202–3206.

163

Jang, B.; Park, J. Y.; Tung, C. H.; Kim, I. H.; Choi, Y. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 2011, 5, 1086–1094.

164

Jang, B.; Choi, Y. Photosensitizer-conjugated gold nanorods for enzyme-activatable fluorescence imaging and photodynamic therapy. Theranostics 2012, 2, 190–197.

165

Geng, J. L.; Li, K.; Pu, K. Y.; Ding, D.; Liu, B. Conjugated polymer and gold nanoparticle co-loaded PLGA nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging. Small 2012, 8, 2421–2429.

166

Kuo, W. S.; Chang, Y. T.; Cho, K. C.; Chiu, K. C.; Lien, C. H.; Yeh, C. S.; Chen, S. J. Gold nanomaterials conjugated with indocyanine green for dual-modality photodynamic and photothermal therapy. Biomaterials 2012, 33, 3270–3278.

167

Obaid, G.; Chambrier, I.; Cook, M. J.; Russell, D. A. Targeting the oncofetal Thomsen–Friedenreich disaccharide using jacalin–PEG phthalocyanine gold nanoparticles for photodynamic cancer therapy. Angew. Chem. Int. Ed. 2012, 51, 6158–6162.

168

Lin, J.; Wang, S. J.; Huang, P.; Wang, Z.; Chen, S. H.; Niu, G.; Li, W. W.; He, J.; Cui, D. X.; Lu, G. M. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329.

169

Nishiyama, N.; Morimoto, Y.; Jang, W. D.; Kataoka, K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv. Drug Deliv. Rev. 2009, 61, 327–338.

170

Muehlmann, L. A.; Joanitti, G. A.; Silva, J. R.; Longo, J. P. F.; Azevedo, R. B. Liposomal photosensitizers: Potential platforms for anticancer photodynamic therapy. Braz. J. Med. Biol. Res. 2011, 44, 729–737.

171

Klajnert, B.; Rozanek, M.; Bryszewska, M. Dendrimers in photodynamic therapy. Curr. Med. Chem. 2012, 19, 4903–4912.

172

Chen, C T.; Chen, C. P.; Yang, J. C.; Tsai, T. Liposome-encapsulated photosensitizers against bacteria. Recent Pat. Anti-Infect. Drug Discov. 2013, 8, 100–107.

173

Skupin-Mrugalska, P.; Piskorz, J.; Goslinski, T.; Mielcarek, J.; Konopka, K.; Duzgunes, N. Current status of liposomal porphyrinoid photosensitizers. Drug Discov. Today 2013, 18, 776–784.

174

Paszko, E.; Ehrhardt, C.; Senge, M. O.; Kelleher, D. P.; Reynolds, J. V. Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn. Ther. 2011, 8, 14–29.

175

Menon, J. U.; Jadeja, P.; Tambe, P.; Vu, K.; Yuan, B. H.; Nguyen, K. T. Nanomaterials for photo-based diagnostic and therapeutic applications. Theranostics 2013, 3, 152–166.

176

Cheng, S. H.; Lee, C. H.; Yang, C. S.; Tseng, F. G.; Mou, C. Y.; Lo, L. W. Mesoporous silica nanoparticles functionalized with an oxygen-sensing probe for cell photodynamic therapy: Potential cancer theranostics. J. Mater. Chem. 2009, 19, 1252–1257.

177

He, X. X.; Wu, X.; Wang, K. M.; Shi, B. H.; Hai, L. Methylene blue-encapsulated phosphonate-terminated silica nanoparticles for simultaneous in vivo imaging and photodynamic therapy. Biomaterials 2009, 30, 5601–5609.

178

Uppal, A.; Jain, B.; Gupta, P. K.; Das, K. Photodynamic action of Rose Bengal silica nanoparticle complex on breast and oral cancer cell lines. Photochem. Photobiol. 2011, 87, 1146–1151.

179

Qian, J.; Wang, D.; Cai, F. H.; Zhan, Q. Q.; Wang, Y. L.; He, S. L. Photosensitizer encapsulated organically modified silica nanoparticles for direct two-photon photodynamic therapy and in vivo functional imaging. Biomaterials 2012, 33, 4851–4860.

180

Wang, S. Y.; Kim, G.; Lee, Y. E. K.; Hah, H. J.; Ethirajan, M.; Pandey, R. K; Kopelman, R. Multifunctional biodegradable polyacrylamide nanocarriers for cancer theranostics—A "see and treat" strategy. ACS Nano 2012, 6, 6843–6851.

181

Tong, R.; Kohane, D. S. Shedding light on nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4, 638–662.

182

McCarthy, J. R.; Korngold, E.; Weissleder, R.; Jaffer, F. A. A light-activated theranostic nanoagent for targeted macrophage ablation in inflammatory atherosclerosis. Small 2010, 6, 2041–2049.

183

Hilderbrand, S. A.; Weissleder, R. Near-infrared fluorescence: Application to in vivo molecular imaging. Curr. Opin. Chem. Biol. 2010, 14, 71–79.

184

Yang, K.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Nano-graphene in biomedicine: Theranostic applications. Chem. Soc. Rev. 2013, 42, 530–547.

185

Xiong, R. H.; Soenen, S. J.; Braeckmans, K.; Skirtach, A. G. Towards theranostic multicompartment microcapsules: In-situ diagnostics and laser-induced treatment. Theranostics 2013, 3, 141–151.

186

Xie, J.; Lee, S.; Chen, X. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079.

187

Chen, X. Y., Ed.; Nanoplatform-Based Molecular Imaging; Wiley: Hoboken, New Jersey, 2011; pp 848.

188

Jokerst, J. V.; Gambhir, S. S. Molecular imaging with theranostic nanoparticles. Acc. Chem. Res. 2011, 44, 1050–1060.

189

Longmire, M.; Choyke, P. L.; Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: Considerations and caveats. Nanomedicine (Lond. ) 2008, 3, 703–717.

190

Sibani, S. A.; McCarron, P. A.; Woolfson, A. D.; Donnelly, R. F. Photosensitiser delivery for photodynamic therapy. Part 2: Systemic carrier platforms. Expert Opin. Drug. Deliv. 2008, 5, 1241–1254.

191

Chen, H. W.; Chen, J. C.; Chen, N. S.; Huang, J. L.; Wang, J. D.; Huang, M. D. Applications of peptide conjugated photosensitizers in photodynamic therapy. Prog. Biochem. Biophys. 2009, 36, 1106–1113.

192

Abdelghany, S. M.; Schmid, D.; Deacon, J.; Jaworski, J.; Fay, F.; McLaughlin, K. M.; Gormley, J. et al. Enhanced anti-tumor activity of the photosensitizer meso-tetra (N-methyl-4-pyridyl) porphine tetra tosylate (TMP) through encapsulation in antibody targeted chitosan/alginate nanoparticles. Biomacromol. 2013, 14, 302–310.

193

Senge, M. O.; Radomski, M. W. Platelets, photosensitizers, and PDT. Photodiagnosis. Photodyn. Ther. 2012, 10, 1–16.

194

Zhang, Y.; Lovell, J. F. Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2012, 2, 905–915.

195

Mroz, P.; Bhaumik, J.; Dogutan, D. K.; Aly, Z.; Kamal. Z.; Khalid, L.; Kee, H. L.; Bocian, D. F.; Holten, D.; Lindsey, J. S. et al. Imidazole metalloporphyrins as photosensitizers for photodynamic therapy: Role of molecular charge; central metal and hydroxyl radical production. Cancer Lett. 2009, 282, 63–76.

196

Nann, T. Nanoparticles in photodynamic therapy. Nano Biomed. Eng. 2011, 3, 137–143.

197

Ethirajan, M.; Chen, Y. H.; Joshi, P.; Pandey, R. K. The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chem. Soc. Rev. 2011, 40, 340–362.

198

Sternberg, E. D.; Dolphin, D.; Bruckner, C. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron 1998, 54, 4151–4202.

199

Moreira, L. M.; dos Santos, F. V.; Lyon, J. P.; Maftoum-Costa, M.; Pacheco-Soares, C.; da Silva, N. S. Photodynamic therapy: Porphyrins and phthalocyanines as photosensitizers. Aust. J. Chem. 2008, 61, 741–754.

200

Josefsen, L. B.; Boyle, R. W. Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy: Imaging and theranostics. Theranostics 2012, 2, 916–966.

201

Matsubara, T.; Kusuzaki, K.; Matsumine, A.; Satonaka, H.; Shintani, K.; Nakamura, T.; Uchida, A. Methylene blue in place of acridine orange as a photosensitizer in photodynamic therapy of osteosarcoma. In Vivo 2008, 22, 297–303.

202

Ding, L. L.; Luan, L. Q.; Shi, J. W.; Liu, W. Phthalocyanine based photosensitizers for photodynamic therapy. Chin. J. Inorg. Chem. 2013, 29, 1591–1598.

203

Giribabu, L.; Sudhakar, K.; Velkannan, V. Phthalocyanines: Potential alternative sensitizers to Ru(Ⅱ) polypyridyl complexes for dye-sensitized solar cells. Curr. Sci. 2012, 102, 991–1000.

204

Calin, M. A.; Diaconeasa, A.; Savastru, D.; Tautan, M. Photosensitizers and light sources for photodynamic therapy of the Bowen's disease. Arch. Dermatol. Res. 2011, 303, 145–151.

205

Awuah, S. G.; You, Y. Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv. 2012, 2, 11169–11183.

206

Kiesslich, T.; Gollmer, A.; Maisch, T.; Berneburg, M.; Plaetzer, K. A comprehensive tutorial on in vitro characterization of new photosensitizers for photodynamic antitumor therapy and photodynamic inactivation of microorganisms. Biomed. Res. Int. 2013, 840417.

207

Wang, L. Y.; Cao, D. R. Research advances of porphyrin photosensitizers in photodynamic therapy. Chin. J. Org. Chem. 2012, 32, 2248–2264.

208

Garland, M. J.; Cassidy, C. M.; Woolfson, D.; Donnelly, R. F. Designing photosensitizers for photodynamic therapy: Strategies, challenges and promising developments. Future Med. Chem. 2009, 1, 667–691.

209

Tsai, T.; Yang, Y. T.; Wang, T. H.; Chien, H. F.; Chen, C. T. Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles. Laser. Surg. Med. 2009, 41, 316–322.

210

Liu, T. W. B.; Chen, J.; Burgess, L.; Cao, W. G.; Shi, J. Y.; Wilson, B. C.; Zheng, G. Multimodal bacteriochlorophyll theranostic agent. Theranostics 2011, 1, 354–362.

211

Hah, H. J.; Kim, G.; Lee, Y. E. K.; Orringer, D. A.; Sagher, O.; Philbert, M. A.; Kopelman, R. Methylene blue-conjugated hydrogel nanoparticles and tumor-cell targeted photodynamic therapy. Macromol. Biosci. 2011, 11, 90–99.

212

Shi, J. Y.; Liu, T. W. B.; Chen, J.; Green, D.; Jaffray, D.; Wilson, B. C.; Wang, F.; Zheng, G. Transforming a targeted porphyrin theranostic agent into a PET imaging probe for cancer. Theranostics 2011, 1, 363–370.

213

Lim, E. J.; Oak, C. H.; Heo, J.; Kim, Y. H. Methylene blue-mediated photodynamic therapy enhances apoptosis in lung cancer cells. Oncol. Rep. 2013, 30, 856–862.

214

Narayan, K. M. V.; Ali, M. K.; Koplan, J. P. Global noncommunicable diseases—where worlds meet. N. Engl. J. Med. 2011, 363, 1196–1198.

215

Cao, W. G.; Ng, K. K.; Corbin, I.; Zhang, Z. H.; Ding, L. L.; Chen, J.; Zheng, G. Synthesis and evaluation of a stable bacteriochlorophyll-analog and its incorporation into high-density lipoprotein nanoparticles for tumor imaging. Bioconjg. Chem. 2009, 20, 2023–2031.

216

Jeong, H.; Huh, M.; Lee, S. J.; Koo, H.; Kwon, I. C.; Jeong, S. Y.; Kim, K. Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 2011, 1, 230–239.

217

Yoon, H. Y.; Koo, H.; Choi, K. Y.; Lee, S. J.; Kim, K.; Kwon, I. C.; Leary, J. F.; Park, K.; Yu, S. H.; Park, J. H. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012, 33, 3980–3989.

218

Huang, P.; Li, Z. M.; Lin, J.; Yang, D. P.; Gao, G.; Xu, C.; Bao, L.; Zhang, C. L.; Wang, K.; Song, H. Photosensitizer–conjugated magnetic nanoparticles for in vivo simultaneous magnetofluorescent imaging and targeting therapy. Biomaterials. 2011, 32, 3447–3458.

219

Shan, J. N.; Budijono, S. J.; Hu, G. H.; Yao, N.; Kang, Y. B.; Ju, Y. G.; Prud'homme, R. K. Pegylated composite nanoparticles containing upconverting phosphors and meso-tetraphenyl porphine (TPP) for photodynamic therapy. Adv. Funct. Mater. 2011, 21, 2488–2495.

220

Wang, C.; Tao, H. Q.; Cheng, L.; Liu, Z. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials. 2011, 32, 6145–6154.

221

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 2011, 50, 5808–5829.

222

Ding, H. Y.; Sumer, B. D.; Kessinger, C. W.; Dong, Y.; Huang, G.; Boothman, D. A.; Gao, J. M. Nanoscopic micelle delivery improves the photophysical properties and efficacy of photodynamic therapy of protoporphyrin IX. J. Control. Release. 2011, 151, 271–277.

223

Yin, M. L.; Li, Z. H.; Liu, Z.; Ren, J. S.; Yang, X. J.; Qu, X. G. Photosensitizer–incorporated G–quadruplex DNA-functionalized magnetofluorescent nanoparticles for targeted magnetic resonance/fluorescence multimodal imaging and subsequent photodynamic therapy of cancer. Chem. Commun. 2012, 48, 6556–6558.

224

Mroz, P.; Yaroslavsky, A.; Kharkwal, G.B.; Hamblin, M. R. Cell death pathways in photodynamic therapy of cancer. Cancers 2011, 3, 2516–2539.

225

Maisch, T.; Spannberger, F.; Regensburger, J.; Felgentrager, A.; Baumler, W. Fast and effective: Intense pulse light photodynamic inactivation of bacteria. J. Ind. Microbiol. Biotechnol. 2012, 39, 1013–1021.

226

Shrestha, A; Kishen, A. Polycationic chitosan-conjugated photosensitizer for antibacterial photodynamic therapy. Photochem. Photobiol. 2012, 88, 577–583.

227

St Denis, T. G.; Dai, T. H.; Izikson, L.; Astrakas, C.; Anderson, R. R.; Hamblin, M. R.; Tegos, G. P. All you need is light: Antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2011, 2, 509–520.

228

Carvalho, C. M. B.; Alves, E.; Costa, L.; Tomé, J. P. C.; Faustino, M. A. F.; Neves, M. G. P. M. S.; Tome, A. C.; Cavaleiro, J. A. S.; Almeida, A.; Cunha, A. Functional cationic nanomagnet–porphyrin hybrids for the photoinactivation of microorganisms. ACS Nano 2010, 4, 7133–7140.

229

Mulder, W. J. M.; Fayad, Z. A. Nanomedicine captures cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 801–802.

230

Godin, B.; Sakamoto, J. H.; Serda, R. E.; Grattoni, A.; Bouamrani, A.; Ferrari, M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci. 2010, 31, 199–205.

231

Goonewardena, S. N. Approaching the asymptote: Obstacles and opportunities for nanomedicine in cardiovascular disease. Curr. Atheroscler. Rep. 2012, 14, 247–253.

232

Lee, S. J.; Koo, H.; Jeong, H.; Huh, M. S.; Choi, Y.; Jeong, S. Y.; Byun, Y.; Choi, K.; Kim, K.; Kwon, I. C. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J. Control. Release. 2011, 152, 21–29.

233

Marotta, D. E.; Cao, W. G.; Wileyto, E. P.; Li, H.; Corbin, I.; Rickter, E.; Glickson, J. D.; Chance, B.; Zheng, G.; Busch, T. M. Evaluation of bacteriochlorophyll–reconstituted low–density lipoprotein nanoparticles for photodynamic therapy efficacy in vivo. Nanomedicine (Lond. ) 2011, 6, 475–487.

234

Ozgur, A.; Lambrecht, F. Y.; Ocakoglu, K.; Gunduz, C.; Yucebas, M. Synthesis and biological evaluation of radiolabeled photosensitizer linked bovine serum albumin nanoparticles as a tumor imaging agent. Int. J. Pharm. 2012, 422, 472–478.

235

Rahmanzadeh, R.; Rai, P.; Celli, J. P.; Rizvi, I.; Baron–Lühr, B.; Gerdes, J.; Hasan, T. Ki-67 as a molecular target for therapy in an in vitro three-dimensional model for ovarian cancer. Cancer Res. 2010, 70, 9234–9242.

236

Xing, R. J.; Bhirde, A. A.; Wang, S. J.; Sun, X. L.; Liu, G.; Hou, Y. L.; Chen, X. Y. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013, 6, 1–9.

237

Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S. Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys. J. 2006, 90, 619–627.

238

Wang, C. G.; Irudayaraj, J. Multifunctional magnetic-optical nanoparticle probes for simultaneous detection, separation, and thermal ablation of multiple pathogens. Small 2010, 6, 283–289.

239

Schwiertz, J.; Wiehe, A.; Gräfe, S.; Gitter, B.; Epple, M. Calcium phosphate nanoparticles as efficient carriers for photodynamic therapy against cells and bacteria. Biomaterials 2009, 30, 3324–3331.

240

Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5'–monophosphate–capped gold nanoflowers: Controllable synthesis, characterization, surface–enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630–639.

241

Johnson, N. J. J.; van Veggel, F. C. J. M. Sodium lanthanide fluoride core–shell nanocrystals: A general perspective on epitaxial shell growth. Nano Res. 2013, 6, 547–561.

242

Wu, H. X.; Wang, P.; He, H. L.; Jin, Y. D. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135–144.

243

Wu, L. N.; Cai, X.; Nelson, K.; Xing, W. X.; Xia, J.; Zhang, R. Y.; Stacy, A. J.; Luderer, M.; Lanza, G. M.; Wang, L. V. A green synthesis of carbon nanoparticles from honey and their use in real–time photoacoustic imaging. Nano Res. 2013, 6, 312–325.

244

Yu, J.; Hao, R.; Sheng, F. G.; Xu, L. L.; Li, G. J.; Hou, Y. L. Hollow manganese phosphate nanoparticles as smart multifunctional probes for cancer cell targeted magnetic resonance imaging and drug delivery. Nano Res. 2012, 5, 679–694.

245

Chen, J. C.; Zhang, R. Y.; Han, L.; Tu, B.; Zhao, D. Y. One-pot synthesis of thermally stable gold@mesoporous silica core–shell nanospheres with catalytic activity. Nano Res. 2013, 6, 871–879.

246

Panfilova, E.; Shirokov, A.; Khlebtsov, B.; Matora, L.; Khlebtsov, N. Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res. 2012, 5, 124–134.

247

Gilroy, K. D.; Sundar, A.; Farzinour, P.; Hughes, R. A.; Neretina, S. Mechanistic study of substrate–based galvanic replacement reactions. Nano Res. 2014, 7, 365–379.

248

Li, J. C.; He, Y.; Sun, W. J.; Luo, Y.; Cai, H. D.; Pan, Y. Q.; Shen, M. W.; Xia, J. D.; Shi, X. Y. Hyaluronic acid-modified hydrothermally synthesized iron oxide nanoparticles for targeted tumor MR imaging. Biomaterials 2014, 35, 3666–3677.

249

Liu, Y.; Li, L. L.; Qi, G. B.; Chen, X. G.; Wang, H. Dynamic disordering of liposomal cocktails and the spatio–temporal favorable release of cargoes to circumvent drug resistance. Biomaterials 2014, 35, 3406–3415.

250

Chen, J. Q.; Liu, H. Y.; Zhao, C. B.; Qin, G. Q.; Xi, G. N.; Li, T.; Wang, X. P.; Chen, T. S. One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 2014, 35, 4986–4995.

251

Gao, F. P.; Lin, Y. X.; Li, L. L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J. G.; Li, J. Y.; Wurthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials 2014, 35, 1004–1014.

252

Zha, Z. B.; Wang, J. R; Zhang, S. H.; Wang, S. M.; Qu, E.; Zhang, Y. Y.; Dai, Z. F. Engineering of perfluorooctylbromide polypyrrole nano–microcapsules for simultaneous contrast enhanced ultrasound imaging and photothermal treatment of cancer. Biomaterials 2014, 35, 287–293.

File
12274_2014_628_MOESM1_ESM.pdf (333.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 June 2014
Revised: 29 September 2014
Accepted: 30 October 2014
Published: 28 November 2014
Issue date: May 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

J. B. would like to acknowledge the generous funding support from the Department of Science and Technology (DST), Government of India under Women Scientists Scheme A (WOS-A). Financial support from the Council for Scientific and Industrial Research (CSIR), New Delhi, India, is gratefully acknowledged by A. K. M.

Return