Journal Home > Volume 8 , Issue 4

The two-dimensional atomically thin insulator hexagonal boron nitride (h-BN) constitutes a new paradigm in tunnel based devices. A large band gap, along with its atomically flat nature without dangling bonds or interface trap states, makes it an ideal candidate for tunnel spin transport in spintronic devices. Here, we demonstrate the tunneling of spin-polarized electrons through large area monolayer h-BN prepared by chemical vapor deposition in magnetic tunnel junctions. In ferromagnet/h-BN/ferromagnet heterostructures fabricated on a chip scale, we show tunnel magnetoresistance at room temperature. Measurements at different bias voltages and on multiple devices with different ferromagnetic electrodes establish the spin polarized tunneling using h-BN barriers. These results open the way for integration of 2D monolayer insulating barriers in active spintronic devices and circuits operating at ambient temperature, and for further exploration of their properties and prospects.


menu
Abstract
Full text
Outline
About this article

Tunnel magnetoresistance with atomically thin two-dimensional hexagonal boron nitride barriers

Show Author's information André Dankert1( )M. Venkata Kamalakar1Abdul Wajid1R. S. Patel2( )Saroj P. Dash1( )
Department of Microtechnology and NanoscienceChalmers University of TechnologySE-41296Göteborg, Sweden
Department of PhysicsBirla Institute of Technology and Science Pilani—K K Birla Goa CampusZuarinagar403726Goa, India

Abstract

The two-dimensional atomically thin insulator hexagonal boron nitride (h-BN) constitutes a new paradigm in tunnel based devices. A large band gap, along with its atomically flat nature without dangling bonds or interface trap states, makes it an ideal candidate for tunnel spin transport in spintronic devices. Here, we demonstrate the tunneling of spin-polarized electrons through large area monolayer h-BN prepared by chemical vapor deposition in magnetic tunnel junctions. In ferromagnet/h-BN/ferromagnet heterostructures fabricated on a chip scale, we show tunnel magnetoresistance at room temperature. Measurements at different bias voltages and on multiple devices with different ferromagnetic electrodes establish the spin polarized tunneling using h-BN barriers. These results open the way for integration of 2D monolayer insulating barriers in active spintronic devices and circuits operating at ambient temperature, and for further exploration of their properties and prospects.

Keywords: hexagonal boron nitride, 2D layered materials, CVD, spintronics, magnetic tunnel junction, tunnel magnetoresistance, tunnel barrier

References(49)

1

Waser, R. Nanoelectronics and Information Technology; 3rd edn, Wiley-VCH, 2012.

2

Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 2008, 80, 1517-1530.

3

Wood, R. Future hard disk drive systems. J. Magn. Magn. Mater. 2009, 321, 555-561.

4

Nagasaka, K. CPP-GMR technology for magnetic read heads of future high-density recording systems. J. Magn. Magn. Mater. 2009, 321, 508-511.

5

Yuasa, S.; Djayaprawira, D. D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO barrier. J. Phys. D: Appl. Phys. 2007, 40, R337-R354.

6

Gao, K. Z.; Heinonen, O.; Chen, Y. H. Read and write processes, and head technology for perpendicular recording. J. Magn. Magn. Mater. 2009, 321, 495-507.

7

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two- dimensional atomic crystals. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451-10453.

8

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419-425.

9

Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; Van Den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.

10

Banerjee, T.; Van Der Wiel, W. G.; Jansen, R. Spin injection and perpendicular spin transport in graphite nanostructures. Phys. Rev. B 2010, 81, 214409.

11

Cobas, E.; Friedman, A. L.; van't Erve, O. M. J.; Robinson, J. T.; Jonker, B. T. Graphene as a tunnel barrier: Graphene- based magnetic tunnel junctions. Nano Lett. 2012, 12, 3000-3004.

12

Chen, J. -J.; Meng, J.; Zhou, Y. -B.; Wu, H. -C.; Bie, Y. -Q.; Liao, Z. -M.; Yu, D. -P. Layer-by-layer assembly of vertically conducting graphene devices. Nat. Commun. 2013, 4, 1921.

13

Li, W.; Xue, L.; Abruña, H. D.; Ralph, D. C. Magnetic tunnel junctions with single-layer-graphene tunnel barriers. Phys. Rev. B 2014, 89, 184418.

14

Iqbal, M. Z.; Iqbal, M. W.; Lee, J. H.; Kim, Y. S.; Chun, S-H.; Eom, J. Spin valve effect of NiFe/graphene/NiFe junctions. Nano Res. 2013, 6, 373-380.

15

Park, J-H.; Lee, H-J. Out-of-plane magnetoresistance in ferromagnet/graphene/ferromagnet spin-valve junctions. Phys. Rev. B 2014, 89, 165417.

16

Dlubak, B.; Martin, M-B.; Weatherup, R. S.; Yang, H.; Deranlot, C.; Blume, R.; Schloegl, R.; Fert, A.; Anane, A.; Hofmann, S. et al. Graphene-passivated nickel as an oxidation-resistant electrode for spintronics. ACS Nano 2012, 6, 10930-10934.

17

Singh, A. K.; Eom, J. Negative magnetoresistance in vertical single layer graphene spin valve at room temperature. ACS Appl. Mater. Interfaces 2014, 6, 2493-2496.

18

Martin, M-B.; Dlubak, B.; Weatherup, R. S.; Yang, H.; Deranlot, C.; Bouzehouane, K.; Petroff, F.; Anane, A.; Hofmann, S.; Robertson, J. et al. Sub-nanometer atomic layer deposition for spintronics in magnetic tunnel junctions based on graphene spin-filtering membranes. ACS Nano 2014, 8, 7890-7895.

19

Friedman, A. L.; van't Erve, O. M. J.; Li, C. H.; Robinson, J. T.; Jonker, B. T. Homoepitaxial tunnel barriers with functionalized graphene-on-graphene for charge and spin transport. Nat. Commun. 2014, 5, 3161.

20
Godel, F.; Venkata Kamalakar, M.; Doudin, B.; Majjad, H.; Henry, Y.; Halley, D.; Dayen, J. -F. Voltage-controlled inversion of tunnel magnetoresistance in epitaxial Nickel/Graphene/MgO/Cobalt junctions. http://arxiv.org/abs/1410.1865.
21

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722-726.

22

Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 232104.

23

Lee, G-H.; Yu, Y-J.; Lee, C.; Dean, C.; Shepard, K. L.; Kim, P.; Hone, J. Electron tunneling through atomically flat and ultrathin hexagonal boron nitride. Appl. Phys. Lett. 2011, 99, 243114.

24

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V.; Mayorov, A. S.; Peres, N. M. R. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 2012, 12, 1707-1710.

25

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947-950.

26

Karpan, V. M.; Khomyakov, P. A.; Giovannetti, G.; Starikov, A. A.; Kelly, P. J. Ni(111)|graphene|h-BN junctions as ideal spin injectors. Phys. Rev. B 2011, 84, 153406.

27

Yazyev, O. V.; Pasquarello, A. Magnetoresistive junctions based on epitaxial graphene and hexagonal boron nitride. Phys. Rev. B 2009, 80, 035408.

28

Hu, M. L.; Yu, Z. Z.; Zhang, K. W.; Sun, L. Z.; Zhong, J. X. Tunneling magnetoresistance of bilayer hexagonal boron nitride and its linear response to external uniaxial strain. J. Phys. Chem. C 2011, 115, 8260-8264.

29

Yamaguchi, T.; Inoue, Y. Masubuchi, S.; Morikawa, S.; Onuki, M.; Watanabe, K.; Taniguchi, T.; Moriya, R.; Machida T. Electrical spin injection into graphene through monolayer hexagonal boron nitride. Appl. Phys. Exp. 2013, 6, 073001.

30

Kamalakar, M. V.; Dankert, A.; Bergsten, J.; Ive, T. Dash, S. P. Enhanced tunnel spin injection into graphene using chemical vapor deposited hexagonal boron nitride. Sci. Rep. 2014, 4, 6146.

31

Fu, W. Y.; Makk, P.; Maurand, R.; Bräuninger, M.; Schönenberger, C. Large-scale fabrication of BN tunnel barriers for graphene spintronics. J. Appl. Phys. 2014, 116, 074306.

32

Gorbachev, R. V.; Riaz, I.; Nair, R. R.; Jalil, R.; Britnell, L.; Belle, B. D.; Hill, E. W.; Novoselov, K. S.; Watanabe, K.; Taniguchi, T. et al. Hunting for monolayer boron nitride: Optical and Raman signatures. Small 2011, 7, 465-468.

33

Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225-226.

34

Miyazaki, T.; Tezuka, N. Giant magnetic tunneling effect in Fe/Al2O3/Fe junction. J. Magn. Magn. Mater. 1995, 139, L231-L234.

35

Moodera, J. S.; Kinder, L. R.; Wong, T. M.; Meservey, R. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 1995, 74, 3273-3276.

36

Parkin, S. S. P.; Kaiser, C.; Panchula, A.; Rice, P. M.; Hughes, B.; Samant, M.; Yang, S-H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862-867.

37

Yuasa, S.; Nagahama, T.; Fukushima, A.; Suzuki, Y.; Ando, K. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 2004, 3, 868-871.

38

LeClair, P.; Swagten, H. J. M.; Kohlhepp, J. T.; van de Veerdonk, R. J. M.; de Jonge, W. J. M. Apparent spin polarization decay in Cu-dusted Co/Al2O3/Co tunnel junctions. Phys. Rev. Lett. 2000, 84, 2933-2936.

39

Fitzsimmons, M. R.; Silva, T. J.; Crawford, T. M. Surface oxidation of permalloy thin films. Phys. Rev. B 2006, 73, 014420.

40

Park, B. G.; Banerjee, T.; Lodder, J. C.; Jansen, R. Tunnel spin polarization versus energy for clean and doped Al2O3 barriers. Phys. Rev. Lett. 2007, 99, 217206.

41

Patel, R. S.; Dash, S. P.; de Jong, M. P.; Jansen, R. Magnetic tunnel contacts to silicon with low-work-function ytterbium nanolayers. J. Appl. Phys. 2009, 106, 016107.

42

Valenzuela, S. O.; Monsma, D. J.; Marcus, C. M.; Narayanamurti, V.; Tinkham, M. Spin polarized tunneling at finite bias. Phys. Rev. Lett. 2005, 94, 196601.

43

Dankert, A.; Kamalakar, M. V.; Bergsten, J.; Dash, S. P. Spin transport and precession in graphene measured by nonlocal and three-terminal methods. Appl. Phys. Lett. 2014, 104, 192403.

44

Dankert, A.; Dulal, R. S.; Dash, S. P. Efficient spin injection into silicon and the role of the schottky barrier. Sci. Rep. 2013, 3, 3196.

45

Dankert, A.; Langouche, L.; Kamalakar, M. V.; Dash, S. P. High performance molybdenum disulfide field effect transistors with spin tunnel contacts. ACS Nano 2014, 8, 476-482.

46

Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. M.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T. et al. Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 2012, 12, 161-166.

47

Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 2010, 10, 3209- 3215.

48

Ci, L. J.; Song, L.; Jin, C. H.; Jariwala, D.; Wu, D. X.; Li, Y. J.; Srivastava, A.; Wang, Z. F.; Storr, K.; Balicas, L. et al. Atomic layers of hybridized boron nitride and graphene domains, Nat. Mater. 2010, 9, 430-435.

49

Liu, Z.; Gong, Y. J.; Zhou, W.; Ma, L. L.; Yu, J. J.; Idrobo, J. C.; Jung, J.; MacDonald, A. H.; Vajtai, R.; Lou, J. Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride. Nat. Commun. 2013, 4, 2541.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 July 2014
Revised: 15 September 2014
Accepted: 10 October 2014
Published: 30 November 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors acknowledge the support from colleagues of the Quantum Device Physics Laboratory and the Nanofabrication Laboratory at Chalmers University of Technology. The authors would like to thank Jie Sun and Niclas Lindvall for sharing the recipe for the 2D layer transfer process. This project is financially supported by the Nano Area of the Advance program at Chalmers University of Technology, an EU FP7 Marie Curie Career Integration grant and the Swedish Research Council (VR) Young Researchers grant. RSP acknowledges the financial support from the Department of Science and Technology, Government of India through the Nano Mission Project (No. SR/NM/NS-1002/2010).

Return