Journal Home > Volume 8 , Issue 4

We report a density functional theory study of a phase transition of a VS2 monolayer that can be tuned by the in-plane biaxial strain. This results in both a metal-insulator transition and a low spin-high spin magnetic transition. At low temperature, the semiconducting H-phase is stable and large strain (> 3%) is required to provoke the transition. On the other hand, at room temperature (300 K), only a small tensile strain of 2% is needed to induce the phase transition from the semiconducting H-phase to the metallic T-phase together with the magnetic transition from high spin to low spin. The phase diagram dependence on both strain and temperature is also discussed in order to provide a better understanding of the phase stability of VS2 monolayers.


menu
Abstract
Full text
Outline
About this article

A density functional theory study of the tunable structure, magnetism and metal-insulator phase transition in VS2 monolayers induced by in-plane biaxial strain

Show Author's information Min Kan1,2,3Bo Wang4Young Hee Lee2,3( )Qiang Sun1,5( )
Department of Materials Science and EngineeringPeking UniversityBeijing100871China
Center for Integrated Nanostructure PhysicsInstitute for Basic Science, Sungkyunkwan UniversitySuwon440-746Korea
Department of Physics and Department of Energy ScienceSungkyunkwan UniversitySuwon440-746Korea
School of Mathematical SciencesPeking UniversityBeijing100871China
Center for Applied Physics and TechnologyPeking UniversityBeijing100871China

Abstract

We report a density functional theory study of a phase transition of a VS2 monolayer that can be tuned by the in-plane biaxial strain. This results in both a metal-insulator transition and a low spin-high spin magnetic transition. At low temperature, the semiconducting H-phase is stable and large strain (> 3%) is required to provoke the transition. On the other hand, at room temperature (300 K), only a small tensile strain of 2% is needed to induce the phase transition from the semiconducting H-phase to the metallic T-phase together with the magnetic transition from high spin to low spin. The phase diagram dependence on both strain and temperature is also discussed in order to provide a better understanding of the phase stability of VS2 monolayers.

Keywords: phase transition, density functional theory (DFT), biaxial strain, phase diagram, transition metal dichalcogenide (TMD) materials

References(41)

1

Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic dirac billiard in graphene quantum dots. Science 2008, 320, 356-358.

2

Wang, X. R.; Li, X. L.; Zhang, L.; Yoon, Y.; Weber, P. K.; Wang, H. L.; Guo, J.; Dai, H. J. N-doping of graphene through electrothermal reactions with ammonia. Science 2009, 324, 768-771.

3

Wang, X.; Zhi, L. J.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2007, 8, 323-327.

4

Eda, G.; Yamaguchi, H.; Voiry, D.; Fujita, T.; Chen, M. W.; Chhowalla, M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011, 11, 5111-5116.

5

Mak, K. F.; He, K. L.; Shan, J.; Heinz, T. F. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 2012, 7, 494-498.

6

Marseglia, E. A. Transition metal dichalcogenides and their intercalates. Int. Rev. Phys. Chem. 1983, 3, 177-216.

7

Wilson, J. A.; Yoffe, A. D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 1969, 18, 193-335.

8

Radisavljevic, B.; Radenovic, A.; Brivio, J.; Giacometti, V.; Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 2011, 6, 147-150.

9

Lee, C.; Li, Q. Y.; Kalb, W.; Liu, X. Z.; Berger, H.; Carpick, R. W.; Hone, J. Frictional characteristics of atomically thin sheets. Science 2010, 328, 76-80.

10

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two- dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699-712.

11

Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L. J.; Loh, K. P.; Zhang, H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 2013, 5, 263- 275.

12

Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F. Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 2010, 105, 136805.

13

Enyashin, A. N.; Yadgarov, L.; Houben, L.; Popov, I.; Weidenbach, M.; Tenne, R.; Bar-Sadan, M.; Seifert, G. New route for stabilization of 1T-WS2 and MoS2 phases. J. Phys. Chem. C 2011, 115, 24586-24591.

14

Lin, Y. C.; Dumcenco, D. O.; Huang, Y. S.; Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 2014, 9, 391-396.

15

Kan, M.; Wang, J. Y.; Li, X. W.; Zhang, S. H.; Li, Y. W.; Kawazoe, Y.; Sun, Q.; Jena, P. Structures and phase transition of a MoS2 monolayer. J. Phys. Chem. C 2014, 118, 1515- 1522.

16

Feng, J.; Sun, X.; Wu, C. Z.; Peng, L.; Lin, C. W.; Hu, S. L.; Yang, J. L.; Xie, Y. Metallic few-layered VS2 ultrathin nanosheets: High two-dimensional conductivity for in-plane supercapacitors. J. Am. Chem. Soc. 2011, 133, 17832-17838.

17

Gao, D. Q.; Xue, Q. X.; Mao, X. Z.; Wang, W. X.; Xu, Q.; Xue, D. S. Ferromagnetism in ultrathin VS2 nanosheets. J. Mater. Chem. C 2013, 1, 5909-5916.

18

Ma, Y. D.; Dai, Y.; Guo, M.; Niu, C. W.; Zhu, Y. T.; Huang, B. B. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 2012, 6, 1695-1701.

19

Zhou, Y. G.; Wang, Z. G.; Yang, P.; Zu, X. T.; Yang, L.; Sun, X.; Gao, F. Tensile strain switched ferromagnetism in layered NbS2 and NbSe2. ACS Nano 2012, 6, 9727-9736.

20

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865- 3868.

21

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758-1775.

22

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169-11186.

23

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin- zone integrations. Phys. Rev. B 1976, 13, 5188-5192.

24

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA + U study. Phys. Rev. B 1998, 57, 1505-1509.

25

Wang, Q. B.; Zhou, C.; Wu, J.; Lü, T. A GGA + U study of the optical properties of vanadium doped ZnO with and without single intrinsic vacancy. Opt. Commun. 2013, 297, 79-84.

26

Lin, H.; Wen, Y. W.; Zhang, C. X.; Zhang, L. L.; Huang, Y. H.; Shan, B.; Chen, R. A GGA+U study of lithium diffusion in vanadium doped LiFePO4. Solid State Commun. 2012, 152, 999-1003.

27

Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 2006, 73, 195107.

28

Du, A. J.; Sanvito, S.; Smith, S. C. First-principles prediction of metal-free magnetism and intrinsic half-metallicity in graphitic carbon nitride. Phys. Rev. Lett. 2012, 108, 197207.

29

Du, A. J.; Sanvito, S.; Li, Z.; Wang, D. W.; Jiao, Y.; Liao, T.; Sun, Q.; Ng, Y. H.; Zhu, Z. H.; Amal, R. et al. Hybrid graphene and graphitic carbon nitride nanocomposite: Gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response. J. Am. Chem. Soc. 2012, 134, 4393-4397.

30

Togo, A.; Oba, F.; Tanaka, I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures. Phys. Rev. B 2008, 78, 134106.

31

Zhang, H.; Liu, L. M.; Lau, W. M. Dimension-dependent phase transition and magnetic properties of VS2. J. Mater. Chem. A 2013, 1, 10821-10828.

32

Ataca, C.; Şahin, H.; Ciraci, S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb- like structure. J. Phys. Chem. C 2012, 116, 8983-8999.

33

Cheiwchanchamnangij, T.; Lambrecht, W. R. L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2. Phys. Rev. B 2012, 85, 205302.

34

Zhang, J.; Soon, J. M.; Loh, K. P.; Yin, J. H.; Ding, J.; Sullivian, M. B.; Wu, P. Magnetic molybdenum disulfide nanosheet films. Nano Lett. 2007, 7, 2370-2376.

35

Huisman, R.; de Jonge, R.; Haas, C.; Jellinek, F. Trigonal- prismatic coordination in solid compounds of transition metals. J. Solid State Chem. 1971, 3, 56-66.

36

Kan, M.; Adhikari, S.; Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 2014, 16, 4990-4994.

37

Kan, M.; Zhou, J.; Sun, Q.; Kawazoe, Y.; Jena, P. The intrinsic ferromagnetism in a MnO2 monolayer. J. Phys. Chem. Lett. 2013, 4, 3382-3386.

38

Kan, M.; Zhou, J.; Sun, Q.; Wang, Q.; Kawazoe, Y.; Jena, P. Tuning magnetic properties of graphene nanoribbons with topological line defects: From antiferromagnetic to ferromagnetic. Phys. Rev. B 2012, 85, 155450.

39

Wippermann, S.; Schmidt, W. G. Entropy explains metal- insulator transition of the Si(111) -In nanowire array. Phys. Rev. Lett. 2010, 105, 126102.

40

Malliakas, C. D.; Kanatzidis, M. G. Nb-Nb interactions define the charge density wave structure of 2H-NbSe2. J. Am. Chem. Soc. 2013, 135, 1719-1722.

41

Mansart, B.; Cottet, M. J. G.; Penfold, T. J.; Dugdale, S. B.; Tediosi, R.; Chergui, M.; Carbone, F. Evidence for a peierls phase-transition in a three-dimensional multiple charge- density waves solid. Proc. Natl. Acad. Sci. USA 2012, 109, 5603-5608.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 August 2014
Revised: 07 October 2014
Accepted: 28 October 2014
Published: 01 December 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work is partially supported by grants from the National Natural Science Foundation of China (Nos. 21173007 and 11274023), and from the National Basic Research Program of China (No. 2012CB921404), and the Institute for Basic Science in Korea.

Return