Journal Home > Volume 8 , Issue 4

A new type of single-walled carbon nanotube (SWNT) thin-film transistor (TFT) structure with a nanomesh network channel has been fabricated from a preseparated semiconducting nanotube solution and simultaneously achieved both high uniformity and a high on/off ratio for application in large-scale integrated circuits. The nanomesh structure is prepared on a high-density SWNT network channel and enables a high on/off ratio while maintaining the excellent uniformity of the electrical properties of the SWNT TFTs. These effects are attributed to the effective elimination of metallic paths across the source/drain electrodes by forming the nanomesh structure in the high-density SWNT network channel. Therefore, our approach can serve as a critical foundation for future nanotube-based thinfilm display electronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly uniform carbon nanotube nanomesh network transistors

Show Author's information Sung-Jin Choi1Patrick Bennett2,3Dongil Lee4Jeffrey Bokor2,5( )
School of Electrical EngineeringKookmin University, Seoul, 136-702South Korea
Department of Electrical Engineering and Computer SciencesUniversity of CaliforniaBerkeleyCA94720USA
Applied Science & TechnologyUniversity of CaliforniaBerkeleyCA94720USA
Department of Electrical EngineeringKorea Advanced Institute of Science and TechnologyDaejeon, 305-701South Korea
Materials Sciences DivisionLawrence Berkeley National LaboratoriesLawrenceCA94720USA

Abstract

A new type of single-walled carbon nanotube (SWNT) thin-film transistor (TFT) structure with a nanomesh network channel has been fabricated from a preseparated semiconducting nanotube solution and simultaneously achieved both high uniformity and a high on/off ratio for application in large-scale integrated circuits. The nanomesh structure is prepared on a high-density SWNT network channel and enables a high on/off ratio while maintaining the excellent uniformity of the electrical properties of the SWNT TFTs. These effects are attributed to the effective elimination of metallic paths across the source/drain electrodes by forming the nanomesh structure in the high-density SWNT network channel. Therefore, our approach can serve as a critical foundation for future nanotube-based thinfilm display electronics.

Keywords: carbon nanotube, thin-film transistor, solution process, network, nanomesh, highly uniform

References(36)

1

Durkop, T.; Getty, S. A.; Cobas, E.; Fuhrer, M. S. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 2004, 4, 35-39.

2

Snow, E. S.; Novak, J. P.; Campbell, P. M.; Park, D. Random networks of carbon nanotubes as an electronic material. Appl. Phys. Lett. 2003, 82, 2145-2147.

3

Zhou, Y.; Gaur, A.; Hur, S. -H.; Kocabas, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks. Nano Lett. 2004, 4, 2031-2035.

4

Kocabas, C.; Meitl, M. A.; Gaur, A.; Shim, M.; Rogers, J. A. Aligned arrays of single-walled carbon nanotubes generated from random networks by orientationally selective laser ablation. Nano Lett. 2004, 4, 2421-2426.

5

Hu, L.; Hecht, D. S.; Grüner, G. Percolation in transparent and conducting carbon nanotube networks. Nano Lett. 2004, 4, 2513-2517.

6

Kumar, S.; Murthy, J. Y.; Alam, M. A. Percolating conduction in finite nanotube networks. Phys. Rev. Lett. 2005, 95, 066802.

7

Cao, Q.; Han, S. -J.; Tulevski, G. S.; Zhu, Y.; Lu, D. D.; Haensch, W. Arrays of single-walled carbon nanotubes with full surface coverage for high-performance electronics. Nat. Nanotechnol. 2013, 8, 180-186.

8

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654-657.

9

Mann, D.; Javey, A.; Kong, J.; Wang, Q.; Dai, H. Ballistic transport in metallic nanotubes with reliable Pd ohmic contacts. Nano Lett. 2003, 3, 1541-1544.

10

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Wang, D.; Gordon, R. G.; Lundstrom, M.; Dai, H. Carbon nanotube field-effect transistors with integrated ohmic contacts and high-k gate dielectrics. Nano Lett. , 2004, 4, 447-450.

11

Javey, A.; Guo, J.; Farmer, D. B.; Wang, Q.; Yenilmez, E.; Gordon, R. G.; Lundstrom, M.; Dai, H. Self-aligned ballistic molecular transistors and electrically parallel nanotube Arrays. Nano Lett. 2004, 4, 1319-1322.

12

Javey, A.; Kim, H.; Brink, M.; Wang, Q.; Ural, A.; Guo, J.; Mcintyre, P.; McEuen, P.; Lundstrom, M.; Dai, H. High-k dielectrics for advanced carbon-nanotube transistors and logic gates. Nat. Mater. 2002, 1, 241-246.

13

Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317-1320.

14

Derycke, V.; Martel, R.; Appenzeller, J.; Avouris, Ph. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 2001, 1, 453-456.

15

Javey, A.; Wang, Q.; Ural, A.; Li, Y.; Dai, H. Carbon nanotube transistor arrays for multistage complementary logic and ring oscillators. Nano Lett. 2002, 2, 929-932.

16

Chen, Z. H.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J. Y.; Wind, S. J.; Solomon, P. M.; Avouris, P. An Integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.

17

Wang, C.; Zhang, J.; Zhou, C. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123-7132.

18

Tans, S.; Verschueren, A.; Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 1998, 393, 49-52.

19

Zhang, J.; Wang, C.; Zhou, C. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412-7419.

20

Cao, Q.; Kim, H.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium- scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495-500.

21

Takahashi, T.; Takei, K.; Gillies, A. G.; Fearing, R. S.; Javey, A. Carbon nanotube active-matrix backplanes for conformal electronics and sensors. Nano Lett. 2011, 11, 5408-5413.

22

Wang, C.; Chien, J. C.; Takei, K.; Takahashi, T.; Nah, J.; Niknejad, A. M.; Javey, A. Extremely bendable, high- performance integrated circuits using semiconducting carbon nanotube networks for digital, analog, and radio-frequency applications. Nano Lett. 2012, 12, 1527-1533.

23

Cao, Q.; Rogers, J. A. Random networks and aligned arrays of single-walled carbon nanotubes for electronic device applications. Nano Res. 2008, 1, 259-272.

24

Cao, Q.; Rogers, J. A. Ultrathin films of single-walled carbon nanotubes for electronics and sensors: A review of fundamental and applied aspects. Adv. Mater. 2008, 21, 29-53.

25

Sangwan, V. K.; Ortiz, R. P.; Alaboson, J. M. P.; Emery, J. D.; Bedzyk, M. J.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 2012, 6, 7480-7488.

26

Rouhi, N.; Jain, D.; Burke, P. J. High-performance semiconducting nanotube inks: Progress and prospects. ACS Nano 2011, 5, 8471-8487.

27

Wang, C.; Takei, K.; Takahashi, T.; Javey, A. Carbon nanotube electronics—moving forward. Chem. Soc. Rev. 2013, 42, 2592-2609.

28

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60-65.

29

Green, A. A.; Hersam, M. C. Nearly single-chirality single- walled carbon nanotubes produced via orthogonal iterative density gradient ultracentrifugation. Adv. Mater. 2011, 23, 2185-2190.

30

Choi, S. -J.; Wang, C.; Lo, C. C.; Bennett, P.; Javey, A.; Bokor, J. Comparative study of solution-processed carbon nanotube network transistors. Appl. Phys. Lett. 2012, 101, 112104.

31

Choi, S. -J.; Bennett, P.; Takei, K.; Wang, C.; Lo, C. C.; Javey, A.; Bokor, J. Short-channel transistors constructed with solution-processed carbon nanotubes. ACS Nano 2013, 7, 798-803.

32

Sarker, B. K.; Shekhar, S.; Khondaker, S. I. Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties. ACS Nano 2011, 5, 6297-6305.

33

Lee, D.; Seol, M. L.; Moon, D. I.; Bennett, P.; Yoder, N.; Humes, J.; Bokor, J.; Choi, Y. -K.; Choi, S. -J. High- performance thin-film transistors produced from highly separated solution processed carbon nanotubes. Appl. Phys. Lett. 2014, 104, 143508.

34

Wang, C.; Zhang, J; Ryu, K.; Badmaev, A.; Gomez, L.; Zhou, C. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285-4291.

35

Rouhi, N.; Jain, D.; Zand, K.; Burke, P. J. Fundamental limits on the mobility of nanotube-based semiconducting inks. Adv. Mater. 2011, 23, 94-99.

36

Pimparkar, N.; Cao, Q.; Rogers, J. A.; Alam, M. A. Theory and practice of "Striping" for improved ON/OFF ratio in carbon nanonet thin film transistors. Nano Res. 2009, 2, 167-175.

File
12274_2014_623_MOESM1_ESM.pdf (2.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 July 2014
Revised: 22 October 2014
Accepted: 25 October 2014
Published: 01 December 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This research was supported by the National Research Foundation of Republic of Korea (NRF) grant funded by the Republic of Korea government (Ministry of Education, Science and Technology, MEST) (No. 2013057870), in part by the Educational Research Team for Creative Engineers on Material-Device-Circuit Co-Design under Grant BK21+, in part by the MSD Focus Center Program, and the Office of Naval Research BRC Program.

Return