Journal Home > Volume 8 , Issue 4

The effect of Sb addition on the morphology of self-catalyzed InAsSb nanowires (NWs) has been systematically investigated. InAs NWs were grown by molecular beam epitaxy with and without antimony (Sb) flux. It is demonstrated that trace amounts of Sb flux are capable of tuning the geometry of NWs, i.e., enhancing lateral growth and suppressing axial growth. We attribute this behavior to the surfactant effect of Sb which results in modifications to the kinetic and thermodynamic processes. A thermodynamic mechanism that accounts for Sb segregation in InAsSb NWs is also elucidated. This study opens a new route towards precisely controlled NW geometries by means of Sb addition.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Surfactant effect of antimony addition to the morphology of self-catalyzed InAs1-xSbx nanowires

Show Author's information E. A. Anyebe1M. K. Rajpalke2T. D. Veal2C. J. Jin3Z. M. Wang4( )Q. D. Zhuang1,4( )
Physics DepartmentLancaster UniversityLancasterLA1 4YBUK
Stephenson Institute for Renewable Energy and Department of PhysicsUniversity of Liverpool, Liverpool, L69 7ZFUK
School of Physics and EngineeringSun Yat-Sen UniversityGuangzhouGuangdong510275China
Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengduSichuan610054China

Abstract

The effect of Sb addition on the morphology of self-catalyzed InAsSb nanowires (NWs) has been systematically investigated. InAs NWs were grown by molecular beam epitaxy with and without antimony (Sb) flux. It is demonstrated that trace amounts of Sb flux are capable of tuning the geometry of NWs, i.e., enhancing lateral growth and suppressing axial growth. We attribute this behavior to the surfactant effect of Sb which results in modifications to the kinetic and thermodynamic processes. A thermodynamic mechanism that accounts for Sb segregation in InAsSb NWs is also elucidated. This study opens a new route towards precisely controlled NW geometries by means of Sb addition.

Keywords: morphology, surfactant, MBE, antimony, self-catalyzed, InAsSb nanowire

References(51)

1

Tchernycheva, M.; Travers, L.; Patriarche, G.; Glas, F.; Harmand, J. C.; Cirlin G. E.; Dubrovskii, V. G. Au-assisted molecular beam epitaxy of InAs nanowires: Growth and theoretical analysis. J. Appl. Phys. 2007, 102, 094313.

2

Wallart, X.; Lastennet, J.; Vignaud, D.; Mollot, F. Performances and limitations of InAs/InAlAs metamorphic heterostructures on InP for high mobility devices. Appl. Phys. Lett. 2005, 87, 043504.

3

Ihn, S-G.; Song, J. -I. InAs nanowires on Si substrates grown by solid source molecular beam epitaxy. Nanotechnology 2007, 18, 355603.

4

Duan, X.; Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 2000, 12, 298-302.

DOI
5

Tidrow, M. Z. Device physics and state of the art of quantum well infrared photodetectors and arrays. Mater. Sci. Eng. B 2000, 74, 45-51.

6

Rogalski, A. Infrared detectors: An overview. Infrared Phys. Technol. 2002, 43, 187-210.

7

Borg, B. M.; Dick, K. A.; Eymery J.; Wernersson, L-E. Enhanced Sb incorporation in InAsSb nanowires grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett. 2011, 98, 113104.

8

Pea, M.; Ercolani, D.; Li, A.; Gemmi, M.; Rossi, F.; Beltram F.; Sorba, L. Suppression of lateral growth in InAs/InAsSb heterostructured nanowires. J. Cryst. Growth 2013, 366, 8-14.

9

Rogalski, A. Infrared detectors: Status and trends. Prog. Quant. Electron. 2003, 27, 59-210.

10

Nimmatoori, P.; Zhang, Q.; Dickey, E. C.; Redwing, J. M. Suppression of the vapor liquid solid growth of silicon nanowires by antimony addition. Nanotechnology 2009, 20, 025607.

11

Copel, M.; Reuter, M. C.; Kaxiras E.; Tromp, R. M. Surfactants in epitaxial growth. Phys. Rev. Lett. 1989, 63, 632-635.

12

Copel, M.; Reuter, M. C.; Horn von Hoegen, M.; Tromp, R. M. Influence of surfactants in Ge and Si epitaxy on Si(001). Phys. Rev. B: Condens. Matter 1990, 42, 11682-11689.

13

Miyoshi, H.; Suzuki, R.; Amano, H.; Horikoshi, Y. Sb surface segregation effect on the phase separation of MBE grown InAsSb. J. Cryst. Growth 2002, 237, 1519-1524.

14

Semenov, A.; Lyublinskaya, O. G.; Solov'ev, V. A.; Meltser, B. Y.; Ivanov, S. V. Surface segregation of Sb atoms during molecular-beam epitaxy of InSb quantum dots in an InAs(Sb) matrix. J. Cryst. Growth 2007, 301, 58-61.

15

Portavoce, A.; Berbezier, I.; Ronda, A. Effect of Sb on Si/Si and Ge/Si growth process. Mater. Sci. Eng. B 2003, 101, 181-185.

16

Joyce, B. A.; Fernández, J. M.; Xie, M. H.; Matsumura, A.; Zhang, J.; Taylor, A. G. Growth and doping of Si and SiGe films by hydride gas-source molecular beam epitaxy. J. Cryst. Growth 1996, 164, 214-222.

17

Xu, T.; Dick, K. A.; Plissard, S.; Nguyen, T. H.; Makoudi, Y.; Berthe, M.; Nys, J-P.; Wallart, X.; Grandidier B.; Caroff, P. Faceting, composition and crystal phase evolution in Ⅲ-V antimonide nanowire heterostructures revealed by combining microscopy techniques. Nanotechnology 2012, 23, 095702.

18

Ercolani, D.; Gemmi, M.; Nasi, L.; Rossi, F.; Pea, M.; Li, A.; Salviati, G.; Beltram, F.; Sorba, L. Growth of InAs/InAsSb heterostructured nanowires. Nanotechnology 2012, 23, 115606.

19

Wei, W.; Bao, X-Y.; Soci, C.; Ding, Y.; Wang Z. L.; Wang, D. Direct heteroepitaxy of vertical InAs nanowires on Si substrates for broad band photovoltaics and photodetection. Nano. Lett. 2009, 9, 2926-2934.

20

Du, W. -N.; Yang, X. -G.; Wang, X. -Y.; Pan, H. -Y.; Ji, H. -M.; Luo, S.; Yang, T.; Wang, Z. -G. The self-seeded growth of InAsSb nanowires on silicon by metal-organic vapor phase epitaxy. J. Cryst. Growth. 2014, 396, 33-37.

21

Plante, M. C.; Lapierre, R. R. Analytical description of the metal-assisted growth of Ⅲ-V nanowires: Axial and radial growths. J. Appl. Phys. 2009, 105, 114304.

22

Dubrovskii, V. G.; Cirlin, G. E.; Soshnikov, I. P.; Tonkikh, A. A.; Sibirev, N. V.; Samsonenko Y. B.; Ustinov, V. M. Diffusion-induced growth of GaAs nanowhiskers during molecular beam epitaxy: Theory and experiment. Phys. Rev. B: Condens. Matter 2005, 71, 205325.

23

Cirlin, G. E.; Dubrovskii, V. G.; Samsonenko, Y. B.; Bouravleuv, A. D.; Durose, K.; Proskuryakov, Y. Y.; Mendes, B.; Bowen, L.; Kaliteevski, M. A.; Abram, R. A.; Zeze, D. Self-catalyzed, pure zincblende GaAs nanowires grown on Si(111) by molecular beam epitaxy. Phys. Rev. B: Condens. Matter 2010, 82, 035302.

24

Vegard, L. Die Konstitution der Mischkristalle und die Raumfüllung der Atome. Z. Phys. 1921, 5, 17-26.

25

El-wahabb, E. A.; Fouad, S. S.; Fadel, M. Theoretical and experimental study of the conduction mechanism in Sb2Se3 alloy. J. Mater. Sci. 2003, 38, 527-532.

26

Fouad, S. S.; Ammar, A. H.; Abo-Ghazala, M. The relationship between optical gap and chemical composition in SbxSel-x system. Physica B 1997, 229, 249-255.

27

Kim, S. -W.; Zimmer, J. P.; Ohnishi, S.; Tracy, J. B.; Frangioni, J. V.; Bawendi, M. G. Engineering InAsxP1-x/InP/ZnSe Ⅲ-V alloyed core/shell quantum dots for the near-infrared. J. Am. Chem. Soc. 2005, 127, 10526-10532.

28

Gong, Q.; Nötzel, R.; Veldhoven, P. J. V.; Eijkemans, T. J.; Wolter, J. H. Wavelength tuning of InAs quantum dots grown on InP(100) by chemical-beam epitaxy. Appl. Phys. Lett. 2004, 84, 275-277.

29

Steinshnider, J.; Harper, J.; Weimer, M.; Lin, C. H.; Pei, S. S.; Chow, D. H. Origin of antimony segregation in GaInSbInAs strained-layer superlattices. Phys. Rev. Lett. 2000, 85, 4562-4565.

30

Woodruff, D. P.; Robinson, J. Sb-induced surface stacking faults at Ag(111) and Cu(111) surfaces: Density-functional theory results. J. Phys. : Condens. Matter 2000, 12, 7699- 7704.

31

Dimroth, F.; Agert, C.; Bett, A. W. Growth of Sb-based materials by MOVPE. J. Cryst. Growth 2003, 248, 265-273.

32

Borg, B. M.; Wernersson, L. -E. Synthesis and properties of antimonide nanowires. Nanotechnology 2013, 24, 202001.

33

Aqra, F.; Ayyad, A. Surface energies of metals in both liquid and solid states. Appl. Surf. Sci. 2011, 257, 6372-6379.

34

Portavoce, A.; Berbezier, I.; Gas, P.; Ronda, A. Sb surface segregation during epitaxial growth of SiGe heterostructures: The effects of Ge composition and biaxial stress. Phys. Rev. B: Condens. Matter 2004, 69, 155414.

35

Tréglia, G.; Legrand, B.; Ducastelle, F.; Saúl, A.; Gallis, C.; Meunier, I.; Mottet, C.; Senhaji, A. Alloy surfaces: Segregation, reconstruction and phase transitions. Comput. Mater. Sci. 1999, 15, 196-235.

36

Pindoria, G.; Kubiak, R. A. A.; Newstead, S. M.; Woodruff, D. P. The influence of atomic size on dopant accumulation and site occupation in molecular beam epitaxy. Surf. Sci. 1990, 234, 17-26.

37

Yang, X.; Jurkovic, M. J.; Heroux, J. B.; Wang, W. I. Molecular beam epitaxial growth of InGaAsN: Sb/GaAs quantum wells for long-wavelength semiconductor lasers. Appl. Phys. Lett. 1999, 75, 178-180.

38

Jiang, C.; Sakaki, H. Sb/As intermixing in self-assembled GaSb/GaAs type Ⅱ quantum dot systems and control of their photoluminescence spectra. Physica E 2005, 26, 180-184.

39

Zhuang, Q.; Godenir, A.; Krier, A.; Tsai, G.; Lin, H. H. Molecular beam epitaxial growth of InAsN: Sb for midinfrared optoelectronics. Appl. Phys. Lett. 2008, 93, 121903.

40

Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817-1822.

41

Zinke-Allmang, M. Phase separation on solid surfaces: Nucleation, coarsening and coalescence kinetics. Thin Solid Films 1999, 346, 1-68.

42

Pozuelo, M.; Zhou, H.; Lin, S.; Lipman, S. A.; Goorsky, M. S.; Hicks, S.; Kodambaka, R. F. Self-catalyzed growth of InP/InSb axial nanowire heterostructures. J. Cryst. Growth 2011, 329, 6-11.

43

McIlroy, D. N.; Alkhateeb, A.; Zhang, D.; Aston, D. E.; Marcy, A. C.; Norton, M. G. Nanospring formation- unexpected catalyst mediated growth. J. Phys. : Condens. Matter 2004, 16, R415-R440.

44

Massies, J.; Grandjean, N. Surfactant effect on the surface diffusion length in epitaxial growth. Phys. Rev. B: Condens. Matter 1993, 48, 8502-8505.

45

Tournié, E.; Grandjean, N.; Trampert, A.; Massies, J.; Ploog, K. H. Surfactant-mediated molecular-beam epitaxy of Ⅲ-V strained-layer heterostructures. J. Cryst. Growth 1995, 150, 460-466.

46

Nebol'sin, V. A.; Shchetinin, A. A. Role of surface energy in the vapor-liquid-solid growth of silicon. Inorg. Mater. 2003, 39, 899-1055.

47

Xie, M. H.; Zhang, J.; Lees, A.; Fernandez, J. M.; Joyce, B. A. Surface segregation during molecular beam epitaxy: The site-blocking effects of surfactant atoms. Surf. Sci. 1996, 367, 231-237.

48

Dubrovskii, V. G.; Sibirev, N. V.; Harmand, J. C.; Glas. F. Growth kinetics and crystal structure of semiconductor nanowires. Phys. Rev. B: Condens. Matter 2008, 78, 235301.

49

Dick, K. A.; Deppert, K.; Mårtensson, T.; Mandl, B.; Samuelson, L.; Seifert, W. Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 2005, 5, 761-764.

50

Zhou, H.; Pozuelo, M.; Hicks, R. F.; Kodambaka, S. Self- catalyzed vapor-liquid-solid growth of InP1-xSbx nanostructures. J. Cryst. Growth 2011, 319, 25-30.

51

Pozuelo, M.; Prikhodko, S. V.; Grantab, R.; Zhou, H.; Gao, L.; Sitzman, S. D.; Gambin, V.; Shenoy, V. B.; Hicks, R. F.; Kodambaka, S. Zincblende to wurtzite transition during the self-catalyzed growth of InP nanostructures. J. Cryst. Growth 2010, 312, 2305-2309.

File
12274_2014_621_MOESM1_ESM.pdf (769.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 June 2014
Revised: 13 October 2014
Accepted: 25 October 2014
Published: 12 December 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

The authors would like to thank the EPSRC Lancaster Impact Acceleration Account, the Royal Society, the National Natural Science Foundation of China, and Gas Sensing Ltd. for financial support.

Return