Journal Home > Volume 8 , Issue 2

Recently, photothermal therapy (PTT) has attracted tremendous attention because of its high efficacy in tumor ablation and minimal damage to normal tissues. While many inorganic nanomaterials, especially various gold nanostructures and nanocarbons, have been extensively explored for near-infrared (NIR) light triggered PTT in the past decade, a variety of organic photothermal agents have also emerged in recent years, aiming at replacing their inorganic counterparts which usually are not biodegradable. In this mini-review, we will summarize several typical classes of recently developed NIR-absorbing organic PTT nanoagents, which include NIR dye-containing micelles, porphysomes, protein-based agents, conjugated polymers, and organic/inorganic nanocomposites. The development of imaging-guided PTT and combination therapy will be introduced as well. Finally, the perspectives and challenges in the future development of PTT will be discussed.


menu
Abstract
Full text
Outline
About this article

Recent advances in the development of organic photothermal nano-agents

Show Author's information Xuejiao SongQian ChenZhuang Liu( )
Institute of Functional Nano & Soft Materials (FUNSOM)Collaborative Innovation Center of Suzhou Nano Science and TechnologySoochow UniversitySuzhou215123China

Abstract

Recently, photothermal therapy (PTT) has attracted tremendous attention because of its high efficacy in tumor ablation and minimal damage to normal tissues. While many inorganic nanomaterials, especially various gold nanostructures and nanocarbons, have been extensively explored for near-infrared (NIR) light triggered PTT in the past decade, a variety of organic photothermal agents have also emerged in recent years, aiming at replacing their inorganic counterparts which usually are not biodegradable. In this mini-review, we will summarize several typical classes of recently developed NIR-absorbing organic PTT nanoagents, which include NIR dye-containing micelles, porphysomes, protein-based agents, conjugated polymers, and organic/inorganic nanocomposites. The development of imaging-guided PTT and combination therapy will be introduced as well. Finally, the perspectives and challenges in the future development of PTT will be discussed.

Keywords: photothermal therapy, near-infrared, organic nanomaterials

References(79)

1

Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc. 2006, 128, 2115-2120.

2

Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med. Sci. 2008, 23, 217-228.

3

Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199-212.

4

Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318-3323.

5

Weissleder, R. A clearer vision for in vivo imaging. Nat Biotechnol. 2001, 19, 316-317.

6

Robinson, J. T.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Wang, H. L.; Luong, R.; Dai, H. J. High performance in vivo near-IR (> 1 μm) imaging and photothermal cancer therapy with carbon nanotubes. Nano Res. 2010, 3, 779-793.

7

Zhou, F. F.; Xing, D.; Ou, Z. M.; Wu, B. Y.; Resasco, D. E.; Chen, W. R. Cancer photothermal therapy in the near-infrared region by using single-walled carbon nanotubes. J. Biomed. Opt. 2009, 14, 021009.

8

Porcel, E.; Liehn, S.; Remita, H.; Usami, N.; Kobayashi, K.; Furusawa, Y.; Le Sech, C.; Lacombe, S. Platinum nanoparticles: A promising material for future cancer therapy? Nanotechnology 2010, 21, 085103.

9

Wang, S. J.; Huang, P.; Nie, L. M.; Xing, R. J.; Liu, D. B.; Wang, Z.; Lin, J.; Chen, S. H.; Niu, G.; Lu, G. M. et al. Single continuous wave laser induced photodynamic/plasmonic photothermal therapy using photosensitizer-functionalized gold nanostars. Adv. Mater. 2013, 25, 3055-3061.

10

Manikandan, M.; Hasan, N.; Wu, H. F. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 2013, 34, 5833-5842.

11

Terentyuk, G.; Panfilova, E.; Khanadeev, V.; Chumakov, D.; Genina, E.; Bashkatov, A.; Tuchin, V.; Bucharskaya, A.; Maslyakova, G.; Khlebtsov, N. et al. Gold nanorods with a hematoporphyrin-loaded silica shell for dual-modality photodynamic and photothermal treatment of tumors in vivo. Nano Res. 2014, 7, 325-337.

12

Huang, P.; Pandoli, O.; Wang, X. S.; Wang, Z.; Li, Z. M.; Zhang, C. L.; Chen, F.; Lin, J.; Cui, D. X.; Chen, X. Y. Chiral guanosine 5'-monophosphate-capped gold nanoflowers: Controllable synthesis, characterization, surface-enhanced Raman scattering activity, cellular imaging and photothermal therapy. Nano Res. 2012, 5, 630-639.

13
Liu, Y.; Yin, J. J.; Nie, Z. H. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res., in press, DOI: 10.1007/s12274-014-0541-9.https://doi.org/10.1007/s12274-014-0541-9
DOI
14

Sherlock, S. P.; Dai, H. J. Multifunctional FeCo-graphitic carbon nanocrystals for combined imaging, drug delivery and tumor-specific photothermal therapy in mice. Nano Res. 2011, 4, 1248-1260.

15

Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J. X.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angew. Chem. Int. Ed. 2013, 52, 4160-4164.

16

Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886-1893.

17

Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S. L.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator- free multifunctional [64Cu] CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. J. Am. Chem. Soc. 2010, 132, 15351-15358.

18

Song, X. J.; Gong, H.; Yin, S. N.; Cheng, L.; Wang, C.; Li, Z. W.; Li, Y. G.; Wang, X. Y.; Liu, G.; Liu, Z. Ultra-small iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv. Funct. Mater. 2014, 24, 1194-1201.

19

Yin, W. Y.; Yan, L.; Yu, J.; Tian, G.; Zhou, L. J.; Zheng, X. P.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z. J. et al. High- throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano. 2014, 8, 6922-6933.

20

Hessel, C. M.; Pattani, V. P.; Rasch, M.; Panthani, M. G.; Koo, B.; Tunnell, J. W.; Korgel, B. A. Copper selenide nanocrystals for photothermal therapy. Nano Lett. 2011, 11, 2560-2566.

21

Tian, Q. W.; Jiang, F. R.; Zou, R. J.; Liu, Q.; Chen, Z. G.; Zhu, M. F.; Yang, S. P.; Wang, J. L.; Wang, J. H.; Hu, J. Q. Hydrophilic Cu9S5 nanocrystals: A photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS Nano 2011, 5, 9761-9771.

22

Lewinski, N.; Colvin, V.; Drezek, R. Cytotoxicity of nanoparticles. Small 2008, 4, 26-49.

23

Braydich-Stolle, L.; Hussain, S.; Schlager, J. J.; Hofmann, M. C. In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol. Sci. 2005, 88, 412-419.

24

Zheng, X. H.; Xing, D.; Zhou, F. F.; Wu, B. Y.; Chen, W. R. Indocyanine green-containing nanostructure as near infrared dual-functional targeting probes for optical imaging and photothermal therapy. Mol. Pharm. 2011, 8, 447-456.

25

Wang, C.; Xu, H.; Liang, C.; Liu, Y. M.; Li, Z. W.; Yang, G. B.; Cheng, L.; Li, Y. G.; Liu, Z. Iron oxide@polypyrrole nanoparticles as a multifunctional drug carrier for remotely controlled cancer therapy with synergistic antitumor effect. ACS Nano 2013, 7, 6782-6795.

26

Yu, J.; Javier, D.; Yaseen, M. A.; Nitin, N.; Richards-Kortum, R.; Anvari, B.; Wong, M. S. Self-assembly synthesis, tumor cell targeting, and photothermal capabilities of antibody-coated indocyanine green nanocapsules. J. Am. Chem. Soc. 2010, 132, 1929-1938.

27

Yang, K.; Xu, H.; Cheng, L.; Sun, C. Y.; Wang, J.; Liu, Z. In vitro and in vivo near-infrared photothermal therapy of cancer using polypyrrole organic nanoparticles. Adv. Mater. 2012, 24, 5586-5592.

28

Cheng, L.; Yang, K.; Chen, Q.; Liu, Z. Organic stealth nanoparticles for highly effective in vivo near-infrared photothermal therapy of cancer. ACS Nano 2012, 6, 5605- 5613.

29

Yang, J.; Choi, J.; Bang, D.; Kim, E.; Lim, E. K.; Park, H.; Suh, J. S.; Lee, K.; Yoo, K. H.; Kim, E. K. et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. 2011, 123, 461-464.

30

Zha, Z. B.; Yue, X. L.; Ren, Q. S.; Dai, Z. F. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv. Mater. 2013, 25, 777-782.

31

Yue, C. X.; Liu, P.; Zheng, M. B.; Zhao, P. F.; Wang, Y. Q.; Ma, Y. F.; Cai, L. T. IR-780 dye loaded tumor targeting theranostic nanoparticles for NIR imaging and photothermal therapy. Biomaterials 2013, 34, 6853-6861.

32
Song, X. J.; Gong, H.; Liu, T.; Cheng, L.; Wang, C.; Sun, X. Q.; Liang, C.; Liu, Z. J-aggregates of organic dye molecules complexed with iron oxide nanoparticles for imaging-guided photothermal therapy under 915-nm light. Small, in press, DOI: 10.1002/smll.201401025.https://doi.org/10.1002/smll.201401025
DOI
33

Zheng, M. B.; Yue, C. X.; Ma, Y. F.; Gong, P.; Zhao, P. F.; Zheng, C. F.; Sheng, Z. H.; Zhang, P. F.; Wang, Z. H.; Cai, L. T. Single-step assembly of DOX/ICG loaded lipid-polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7, 2056-2067.

34

Zheng, C. F.; Zheng, M. B.; Gong, P.; Jia, D. X.; Zhang, P. F.; Shi, B. H.; Sheng, Z. H.; Ma, Y. F.; Cai, L. T. Indocyanine green-loaded biodegradable tumor targeting nanoprobes for in vitro and in vivo imaging. Biomaterials 2012, 33, 5603- 5609.

35

Yuan, A. H.; Wu, J. H.; Tang, X. L.; Zhao, L. L.; Xu, F.; Hu, Y. Q. Application of near-infrared dyes for tumor imaging, photothermal, and photodynamic therapies. J. Pharm. Sci. 2013, 102, 6-28.

36
Pandey, R. K.; James, N.; Chen, Y. H.; Dobhal, M. P. Cyanine dye-based compounds for tumor imaging with and without photodynamic therapy. In Heterocyclic Polymethine Dyes; Strekowski, L., Ed.; Springer: Berlin, 2008; pp 41-74.https://doi.org/10.1007/7081_2008_113
DOI
37

Escobedo, J. O.; Rusin, O.; Lim, S.; Strongin, R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64-70.

38

Shan, G. B.; Weissleder, R.; Hilderbrand, S. A. Upconverting organic dye doped core-shell nano-composites for dual- modality NIR imaging and photo-thermal therapy. Theranostics 2013, 3, 267-274.

39

Tan, X.; Luo, S. L.; Wang, D. C.; Su, Y. P.; Cheng, T. M.; Shi, C. M. A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 2012, 33, 2230-2239.

40

Cheng, L.; He, W. W.; Gong, H.; Wang, C.; Chen, Q.; Cheng, Z. P.; Liu, Z. PEGylated micelle nanoparticles encapsulating a non-fluorescent near-infrared organic dye as a safe and highly-effective photothermal agent for in vivo cancer therapy. Adv. Funct. Mater. 2013, 23, 5893-5902.

41

Lim, C. K.; Shin, J.; Lee, Y. D.; Kim, J.; Oh, K. S.; Yuk, S. H.; Jeong, S. Y.; Kwon, I. C.; Kim, S. Phthalocyanine- aggregated polymeric nanoparticles as tumor-homing near- infrared absorbers for photothermal therapy of cancer. Theranostics 2012, 2, 871-879.

42

Sheng, Z. H.; Hu, D. H.; Xue, M. M.; He, M.; Gong, P.; Cai, L. T. Indocyanine green nanoparticles for theranostic applications. Nano-Micro Lett. 2013, 5, 145-150.

43

Landsman, M. L.; Kwant, G.; Mook, G. A.; Zijlstra, W. G. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol. 1976, 40, 575-583.

44

Dzurinko, V. L.; Gurwood, A. S.; Price, J. R. Intravenous and indocyanine green angiography. Optometry 2004, 75, 743-755.

45

Yoneya, S.; Saito, T.; Komatsu, Y.; Koyama, I.; Takahashi, K.; Duvoll-Young, J. Binding properties of indocyanine green in human blood. Invest. Ophth. Vis. Sci. 1998, 39, 1286-1290.

46

Saxena, V.; Sadoqi, M.; Shao, J. Degradation kinetics of indocyanine green in aqueous solution. J. Pharm. Sci. 2003, 92, 2090-2097.

47

Mordon, S.; Devoisselle, J. M.; Soulie-Begu, S.; Desmettre, T. Indocyanine green: Physicochemical factors affecting its fluorescence in vivo. Microvasc. Res. 1998, 55, 146-152.

48

Zheng, M. B.; Zhao, P. F.; Luo, Z. Y.; Gong, P.; Zheng, C. F.; Zhang, P. F.; Yue, C. X.; Gao, D. Y.; Ma, Y. F.; Cai, L. T. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl. Mater. Interfaces 2014, 6, 6709-6716.

49

Liu, P.; Yue, C. X.; Shi, B. H.; Gao, G. H.; Li, M. X.; Wang, B.; Ma, Y. F.; Cai, L. T. Dextran based sensitive theranostic nanoparticles for near-infrared imaging and photothermal therapy in vitro. Chem. Commun. 2013, 49, 6143-6145.

50
Gong, H.; Dong, Z. L.; Liu, Y. M.; Yin, S. N.; Cheng, L.; Xi, W. Y.; Xiang, J.; Liu, K.; Li, Y. G.; Liu, Z. Engineering of multifunctional nano-micelles for combined photothermal and photodynamic therapy under the guidance of multimodal imaging. Adv. Funct. Mater., in press, DOI: 10.1002/adfm.201401451.https://doi.org/10.1002/adfm.201401451
DOI
51

Yang, H.; Mao, H. J.; Wan, Z. H.; Zhu, A. J.; Guo, M.; Li, Y. L.; Li, X. M.; Wan, J. L.; Yang, X. L.; Shuai, X. T. et al. Micelles assembled with carbocyanine dyes for theranostic near-infrared fluorescent cancer imaging and photothermal therapy. Biomaterials 2013, 34, 9124-9133.

52

Peng, C. L.; Shih, Y. H.; Lee, P. C.; Hsieh, T. M. H.; Luo, T. Y.; Shieh, M. J. Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS Nano 2011, 5, 5594-5607.

53

Srinivasan, S.; Manchanda, R.; Lei, T. J.; Nagesetti, A.; Fernandez-Fernandez, A.; McGoron, A. J. Targeted nanoparticles for simultaneous delivery of chemotherapeutic and hyperthermia agents—An in vitro study. J. Photochem. Photobiol. B 2014, 136, 81-90.

54

Wan, Z. H.; Mao, H. J.; Guo, M.; Li, Y. L.; Zhu, A. J.; Yang, H.; He, H.; Shen, J. K.; Zhou, L. J.; Jiang, Z. et al. Highly efficient hierarchical micelles integrating photothermal therapy and singlet oxygen-synergized chemotherapy for cancer eradication. Theranostics 2014, 4, 399-411.

55

Lovell, J. F.; Jin, C. S.; Huynh, E.; MacDonald, T. D.; Cao, W. G.; Zheng, G. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew. Chem. Int. Ed. 2012, 51, 2429-2433.

56

Jin, C. S.; Lovell, J. F.; Chen, J.; Zheng, G. Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 2013, 7, 2541-2550.

57

Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H. L.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W. G.; Wang, L. H. V.; Zheng, G. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 2011, 10, 324-332.

58

Ng, K. K.; Lovell, J. F.; Vedadi, A.; Hajian, T.; Zheng, G. Self-assembled porphyrin nanodiscs with structure-dependent activation for phototherapy and photodiagnostic applications. ACS Nano 2013, 7, 3484-3490.

59

Huynh, E.; Jin, C. S.; Wilson, B. C.; Zheng, G. Aggregate enhanced trimodal porphyrin shell microbubbles for ultrasound, photoacoustic, and fluorescence imaging. Bioconjugate Chem. 2014, 25, 796-801.

60

Liu, T. W.; MacDonald, T. D.; Shi, J. Y.; Wilson, B. C.; Zheng, G. Intrinsically copper-64-labeled organic nanoparticles as radiotracers. Angew. Chem. Int. Ed. 2012, 51, 13128-13131.

61

MacDonald, T. D.; Liu, T. W.; Zheng, G. An MRI-sensitive, non-photobleachable porphysome photothermal agent. Angew. Chem. Int. Ed. 2014, 53, 6956-6959.

62

Chen, Q.; Wang, C.; Cheng, L.; He, W. W.; Cheng, Z. P.; Liu, Z. Protein modified upconversion nanoparticles for imaging-guided combined photothermal and photodynamic therapy. Biomaterials 2014, 35, 2915-2923.

63

Wu, L.; Fang, S. T.; Shi, S.; Deng, J. Z.; Liu, B.; Cai, L. T. Hybrid polypeptide micelles loading indocyanine green for tumor imaging and photothermal effect study. Biomacromolecules 2013, 14, 3027-3033.

64

Sheng, Z. H.; Song, L.; Zheng, J. X.; Hu, D. H.; He, M.; Zheng, M. B.; Gao, G. H.; Gong, P.; Zhang, P. F.; Ma, Y. F. et al. Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 2013, 34, 5236-5243.

65

Gao, F. P.; Lin, Y. X.; Li, L. L.; Liu, Y.; Mayerhöffer, U.; Spenst, P.; Su, J. G.; Li, J. Y.; Würthner, F.; Wang, H. Supramolecular adducts of squaraine and protein for noninvasive tumor imaging and photothermal therapy in vivo. Biomaterials 2014, 35, 1004-1014.

66

Huang, P.; Rong, P. F.; Jin, A.; Yan, X. F.; Zhang, M. G.; Lin, J.; Hu, H.; Wang, Z.; Yue, X. Y.; Li, W. W. et al. Dye-loaded ferritin nanocages for multimodal imaging and photothermal therapy. Adv. Mater. 2014, 26, 6401-6408.

67

Chen, Q.; Wang, C.; Zhan, Z. X.; He, W. W.; Cheng, Z. P.; Li, Y. Y.; Liu, Z. Near-infrared dye bound albumin with separated imaging and therapy wavelength channels for imaging-guided photothermal therapy. Biomaterials 2014, 35, 8206-8214.

68

Chen, Q.; Liang, C.; Wang, X.; He, J. K.; Li, Y. G.; Liu, Z. An albumin-based theranostic nano-agent for dual-modal imaging guided photothermal therapy to inhibit lymphatic metastasis of cancer post surgery. Biomaterials 2014, 35, 9355-9362.

69

Chen, M.; Fang, X. L.; Tang, S. H.; Zheng, N. F. Polypyrrole nanoparticles for high-performance in vivo near-infrared photothermal cancer therapy. Chem. Commun. 2012, 48, 8934-8936.

70

Zha, Z. B.; Wang, J. R.; Qu, E. Z.; Zhang, S. H.; Jin, Y. S.; Wang, S. M.; Dai, Z. F. Polypyrrole hollow microspheres as echogenic photothermal agent for ultrasound imaging guided tumor ablation. Sci. Rep. 2013, 3, 2360.

71

Gong, H.; Cheng, L.; Xiang, J.; Xu, H.; Feng, L. Z.; Shi, X. Z.; Liu, Z. Near-infrared absorbing polymeric nanoparticles as a versatile drug carrier for cancer combination therapy. Adv. Funct. Mater. 2013, 23, 6059-6067.

72

Liu, Y. L.; Ai, K. L.; Liu, J. H.; Deng, M.; He, Y. Y.; Lu, L. H. Dopamine-melanin colloidal nanospheres: An efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 2013, 25, 1353-1359.

73

Fu, G. L.; Liu, W.; Li, Y. Y.; Jin, Y. S.; Jiang, L. D.; Liang, X. L.; Feng, S. S.; Dai, Z. F. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjugate Chem. 2014, 25, 1655-1663.

74

Cheng, L.; Gong, H.; Zhu, W. W.; Liu, J. J.; Wang, X. Y.; Liu, G.; Liu, Z. PEGylated Prussian blue nanocubes as a theranostic agent for simultaneous cancer imaging and photothermal therapy. Biomaterials 2014, 35, 9844-9852.

75

Fu, G. L.; Liu, W.; Feng, S. S.; Yue, X. L. Prussian blue nanoparticles operate as a new generation of photothermal ablation agents for cancer therapy. Chem. Commun. 2012, 48, 11567-11569.

76

Ma, Y.; Tong, S.; Bao, G.; Gao, C.; Dai, Z. F. Indocyanine green loaded SPIO nanoparticles with phospholipid-PEG coating for dual-modal imaging and photothermal therapy. Biomaterials 2013, 34, 7706-7714.

77

Lin, L. S.; Cong, Z. X.; Cao, J. B.; Ke, K. M.; Peng, Q. L.; Gao, J. H.; Yang, H. H.; Liu, G.; Chen, X. Y. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano 2014, 8, 3876-3883.

78

Zhang, X.; Xu, X. W.; Li, T. T.; Lin, M.; Lin, X. Y.; Zhang, H.; Sun, H. C.; Yang, B. Composite photothermal platform of polypyrrole-enveloped Fe3O4 nanoparticle self-assembled superstructures. ACS Appl. Mater. Interfaces 2014, 6, 14552-14561.

79

Tian, Q. W.; Wang, Q.; Yao, K. X.; Teng, B. Y.; Zhang, J. Z.; Yang, S. P.; Han, Y. Multifunctional polypyrrole@Fe3O4 nanoparticles for dual-modal imaging and in vivo photothermal cancer therapy. Small 2014, 10, 1063-1068.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 September 2014
Revised: 16 October 2014
Accepted: 20 October 2014
Published: 21 November 2014
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was partially supported by the National Basic Research Program of China (973 Program) (Nos. 2012CB932600 and 2011CB911002), the National Natural Science Foundation of China (No. 51222203), the Jiangsu Natural Science Fund for Distinguished Young Scholars, the Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, and a Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Return