Journal Home > Volume 8 , Issue 4

Thin films of block copolymers (BCPs) are widely accepted as potentially important materials in a host of technological applications including nanolithography. In order to induce domain separation and form well-defined structural arrangements, many of these are solvent-annealed (i.e. solvent swollen) at moderate temperatures. The use of solvents can be challenging in industry from an environmental point of view as well as having practical/cost issues. However, a simple and environmentally friendly alternative to solvo-thermal annealing for the periodically ordered nanoscale phase separated structures is described herein. Various asymmetric polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films were annealed in a compressible fluid, supercritical carbon dioxide (scCO2), to control nanodomain orientation and surface morphologies. For the first time, periodic well defined, hexagonally ordered films with sub-25 nm pitch size were demonstrated using a supercritical fluid (SCF) process at low temperatures and pressures. Predominant swelling of PEO domains in scCO2 induces nanophase separation. scCO2 serves as green alternative to the conventional organic solvents for the phase segregation of BCPs with complete elimination of any residual solvent in the patterned film. The depressurization rate of scCO2 following annealing was found to affect the morphology of the films. The supercritical annealing conditions could be used to define nanoporous analogues of the microphase separated films without additional processing, providing a one-step route to membrane like structures without affecting the ordered surface phase segregated structure. An understanding of the BCP self-assembly mechanism can be realized in terms of the deviation in glass transition temperature, melting point, viscosity, interaction parameter and volume fraction of the constituent blocks in the scCO2 environment.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanophase separation and structural evolution of block copolymer films: A "green" and "clean" supercritical fluid approach

Show Author's information Tandra Ghoshal1,2Subhajit Biswas1,2Colm O’Regan1,2Justin D. Holmes1,2( )Michael A. Morris1,2( )
Materials Chemistry and Analysis Group and Materials Research GroupDepartment of Chemistry and Tyndall National InstituteUniversity College Cork, CorkIreland
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN/AMBER)Trinity College Dublin, DublinIreland

Abstract

Thin films of block copolymers (BCPs) are widely accepted as potentially important materials in a host of technological applications including nanolithography. In order to induce domain separation and form well-defined structural arrangements, many of these are solvent-annealed (i.e. solvent swollen) at moderate temperatures. The use of solvents can be challenging in industry from an environmental point of view as well as having practical/cost issues. However, a simple and environmentally friendly alternative to solvo-thermal annealing for the periodically ordered nanoscale phase separated structures is described herein. Various asymmetric polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films were annealed in a compressible fluid, supercritical carbon dioxide (scCO2), to control nanodomain orientation and surface morphologies. For the first time, periodic well defined, hexagonally ordered films with sub-25 nm pitch size were demonstrated using a supercritical fluid (SCF) process at low temperatures and pressures. Predominant swelling of PEO domains in scCO2 induces nanophase separation. scCO2 serves as green alternative to the conventional organic solvents for the phase segregation of BCPs with complete elimination of any residual solvent in the patterned film. The depressurization rate of scCO2 following annealing was found to affect the morphology of the films. The supercritical annealing conditions could be used to define nanoporous analogues of the microphase separated films without additional processing, providing a one-step route to membrane like structures without affecting the ordered surface phase segregated structure. An understanding of the BCP self-assembly mechanism can be realized in terms of the deviation in glass transition temperature, melting point, viscosity, interaction parameter and volume fraction of the constituent blocks in the scCO2 environment.

Keywords: self-assembly, nanopores, block copolymer, supercritical CO2 , swelling

References(47)

1

Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Molecular self-assembly and nanochemistry: A chemical strategy for the synthesis of nanostructures. Science 1991, 254, 1312-1319.

2

Park, C.; Yoon, J.; Thomas, E. L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer 2003, 44, 6725-6760.

3

Bates, F. S.; Fredrickson, G. H. Block copolymers-designer soft materials. Phys. Today 1999, 52, 32-38.

4

Yao, L.; Woll, A. R.; Watkins, J. J. Directed assembly of block copolymer templates for the fabrication of mesoporous silica films with controlled architectures via 3-D replication. Macromolecules 2013, 46, 6132-6144.

5

Pai, R. A.; Humayun, R.; Schulberg, M. T.; Sengupta, A.; Sun, J. N.; Watkins, J. J. Mesoporous silicates prepared using preorganized templates in supercritical fluids. Science 2004, 303, 507-510.

6

Gu, Y. B.; Dorin, R. M.; Wiesner, U. Asymmetric organic- inorganic hybrid membrane formation via block copolymer- nanoparticle co-assembly. Nano Lett. 2013, 13, 5323-5328.

7

Serghei, A.; Zhao, W.; Wei, X.; Chen, D.; Russell, T. P. Nanofluidics with phase separated block-copolymers: Glassy dynamics during capillary flow. Eur. Phys. J. -Spec. Top. 2010, 189, 95-101.

8

Zhao, J. C.; Jiang, S. C.; Ji, X. L.; An, L. J.; Jiang, B. Z. Study of the time evolution of the surface morphology of thin asymmetric diblock copolymer films under solvent vapor. Polymer 2005, 46, 6513-6521.

9

Mokarian-Tabari, P.; Collins, T. W.; Holmes, J. D.; Morris, M. A. Cyclical "flipping" of morphology in block copolymer thin films. ACS Nano 2011, 5, 4617-4623.

10

Huang, W. H.; Chen, P. Y.; Tung, S. H. Effects of annealing solvents on the morphology of block copolymer-based supramolecular thin films. Macromolecules 2012, 45, 1562-1569.

11

Padinger, F.; Brabec, C. J.; Fromherz, T.; Hummelen, J. C.; Sariciftci, N. S. Fabrication of large area photovoltaic devices containing various blends of polymer and fullerene derivatives by using the doctor blade technique. Opto-Electron. Rev. 2000, 8, 280-283.

12

Koegler, W. S.; Patrick, C.; Cima, M. J.; Griffith, L. G. Carbon dioxide extraction of residual chloroform from biodegradable polymers. J. Biomed. Mater. Res. 2002, 63, 567-576.

13

Ghoshal, T.; Fleming, P. G.; Holmes, J. D.; Morris, M. A. The stability of ''Ce2O3'' nanodots in ambient conditions: A study using block copolymer templated structures. J. Mater. Chem. 2012, 22, 22949-22957.

14

Ghoshal, T.; Maity, T.; Godsell, J. F.; Roy, S.; Morris, M. A. Large scale monodisperse hexagonal arrays of superparamagnetic iron oxides nanodots: A facile block copolymer inclusion method. Adv. Mater. 2012, 24, 2390-2397.

15

Ghoshal, T.; Senthamaraikannan, R.; Shaw, M. T.; Holmes, J. D.; Morris, M. A. "In situ" hard mask materials: A new methodology for creation of vertical silicon nanopillar and nanowire arrays. Nanoscale 2012, 4, 7743-7750.

16

DeSimone, J. M. Practical approaches to green solvents. Science 2002, 297, 799-803.

17

Reverchon, E.; Adami, R. Nanomaterials and supercritical fluids. J. Supercrit. Fluid. 2006, 37, 1-22.

18

Tomasko, D. L.; Li, H. B.; Liu, D. H.; Han, X. M.; Wingert, M. J.; Lee, L. J.; Koelling, K. W. A review of CO2 applications in the processing of polymers. Ind. Eng. Chem. Res. 2003, 42, 6431-6456.

19

Wissinger, R. G.; Paulaitis, M. E. Glass transitions in polymer CO2 mixtures at elevated pressures. J. Polym. Sci. Pt. B-Polym. Phys. 1991, 29, 631-633.

20

Vogt, B. D.; RamachandraRao, V. S.; Gupta, R. R.; Lavery, K. A.; Francis, T. J.; Russell, T. P.; Watkins, J. J. Phase behavior of polystyrene-block-poly(n-alkyl methacrylate)s dilated with carbon dioxide. Macromolecules 2003, 36, 4029-4036.

21

Watkins, J. J.; Brown, G. D.; RamachandraRao, V. S.; Pollard, M. A.; Russell, T. P. Phase separation in polymer blends and diblock copolymers induced by compressible solvents. Macromolecules 1999, 32, 7737-7740.

22

RamachandraRao, V. S.; Gupta, R. R.; Russell, T. P.; Watkins, J. J. Enhancement of diblock copolymer ordering kinetics by supercritical carbon dioxide annealing. Macromolecules 2001, 34, 7923-7925.

23

Arceo, A.; Green, P. F. Ordering transition of block copolymer films. J. Phys. Chem. B 2005, 109, 6958-6962.

24

Shah, M.; Pryamitsyn, V.; Ganesan, V. Instabilities in block copolymer films induced by compressible solvents. J. Phys. Chem. B 2007, 111, 402-407.

25

Zhang, R.; Yokoyama, H. Fabrication of nanoporous structures in block copolymer using selective solvent assisted with compressed carbon dioxide. Macromolecules 2009, 42, 3559-3564.

26

Gong, J. L.; Zhang, A. J.; Bai, H.; Zhang, Q. K.; Du, C.; Li, L.; Hong, Y. Z.; Li, J. Formation of nanoscale networks: Selectively swelling amphiphilic block copolymers with CO2-expanded liquids. Nanoscale 2013, 5, 1195-1204.

27

Hanrahan, J. P.; Copley, M. P.; Ziegler, K. J.; Spalding, T. R.; Morris, M. A.; Steytler, D. C.; Heenan, R. K.; Schweins, R.; Holmes, J. D. Pore size engineering in mesoporous silicas using supercritical CO2. Langmuir 2005, 21, 4163-4167.

28

Hanrahan, J. P.; Copley, M. P.; Ryan, K. M.; Spalding, T. R.; Morris, M. A.; Holmes, J. D. Pore expansion in mesoporous silicas using supercritical carbon dioxide. Chem. Mater. 2004, 16, 424-427.

29

Chen, Y.; Koberstein, J. T. Fabrication of block copolymer monolayers by adsorption from supercritical fluids: A versatile concept for modification and functionalization of polymer surfaces. Langmuir 2008, 24, 10488-10493.

30

O'Driscoll, B. M. D.; Griffiths, G. H.; Matsen, M. W.; Hamley, I. W. Structure variation and evolution in microphase- separated grafted diblock copolymer films. Macromolecules 2011, 44, 8527-8536.

31

Li, Y.; Wang, X. C.; Sanchez, I. C.; Johnston, K. P.; Green, P. F. Ordering in asymmetric block copolymer films by a compressible fluid. J. Phys. Chem. B 2007, 111, 16-25.

32

Ghoshal, T.; Shaw, M. T.; Bolger, C. T.; Holmes, J. D.; Morris, M. A. A general method for controlled nanopatterning of oxide dots: A microphase separated block copolymer platform. J. Mater. Chem. 2012, 22, 12083-12089.

33

Xu, J.; Hong, S. W.; Gu, W. Y.; Lee, K. Y.; Kuo, D. S.; Xiao, S. G.; Russell, T. P. Fabrication of silicon oxide nanodots with an areal density beyond 1 teradots inch-2. Adv. Mater. 2011, 23, 5755-5761.

34

Ghoshal, T; Maity, T; Senthamaraikannan, R; Shaw, M. T.; Carolan, P; Holmes, J. D.; Roy, S; Morris, M. A. Size and space controlled hexagonal arrays of superparamagnetic iron oxide nanodots: Magnetic studies and application. Sci. Rep. 2013, 3, 2772.

35

Gourgouillon, D.; da Ponte, M. N. High pressure phase equilibria for poly(ethylene glycol)s + CO2: Experimental results and modelling. Phys. Chem. Chem. Phys. 1999, 1, 5369-5375.

36

Zhang, Y.; Gangwani, K. K.; Lemert, R. M. Sorption and swelling of block copolymers in the presence of supercritical fluid carbon dioxide. J. Supercrit. Fluid. 1997, 11, 115-134.

37

Pham, J. Q.; Johnston, K. P.; Green, P. F. Retrograde vitrification in CO2/polystyrene thin films. J. Phys. Chem. B 2004, 108, 3457-3461.

38

Weidner, E.; Wiesmet, V.; Knez, Z.; Skerget, M. Phase equilibrium (solid-liquid-gas) in polyethyleneglycol-carbon dioxide systems. J. Supercrit. Fluid. 1997, 10, 139-147.

39

Guadagno, T.; Kazarian, S. G. High-pressure CO2-expanded solvents: Simultaneous measurement of CO2 sorption and swelling of liquid polymers with in situ near-IR spectroscopy. J. Phys. Chem. B 2004, 108, 13995-13999.

40

Madsen, L. A. Plasticization of poly(ethylene oxide) in fluid CO2 measured by in situ NMR. Macromolecules 2006, 39, 1483-1487.

41

Chen, W. Y.; Zheng, J. X.; Cheng, S. Z. D.; Li, C. Y.; Huang, P.; Zhu, L.; Xiong, H. M.; Ge, Q.; Guo, Y.; Quirk, R. P.; Lotz, B.; Deng, L. F.; Wu, C.; Thomas, E. L. Onset of tethered chain overcrowding. Phys. Rev. Lett. 2004, 93, 028301-028304.

42

Michler, G. H. Electron Microscopy of Polymers; Springer: Heidelberg, 2008.

43

Wang, W. C. V.; Kramer, E. J.; Sachse, W. H. Effects of high-pressure CO2 on the glass-transition temperature and mechanical-properties of polystyrene. J. Polym. Sci. Pol. Phys. 1982, 20, 1371-1384.

44

Helfand, E.; Tagami, Y. Theory of interface between immiscible polymers. J. Chem. Phys. 1972, 56, 3592-3596.

45

Hanley, K. J.; Lodge, T. P. Effect of dilution on a block copolymer in the complex phase window. J. Polym. Sci. Pol. Phys. 1998, 36, 3101-3113.

DOI
46

Labuschagne, P. W.; Kazarian, S. G.; Sadiku, R. E. Supercritical CO2-assisted preparation of ibuprofen-loaded PEG-PVP complexes. J. Supercrit. Fluid. 2011, 57, 190-197.

47

Hrncic, M. K.; Markocic, E.; Trupej, N.; Skerjet, M.; Knez, Z. Investigation of thermodynamic properties of the binary system polyethylene glycol/CO2 using new methods. J. Supercrit. Fluid. 2014, 87, 50-58.

File
12274_2014_616_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 August 2014
Revised: 10 October 2014
Accepted: 18 October 2014
Published: 18 November 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We acknowledge financial support from the Science Foundation Ireland (Semiconductor Research Corporation Nos. 2011-IN-2194, 09/IN.1/I2602, 12/RC/2278, 09/SIRG/I1621 and CSET CRANN). The contribution of the Foundation's Principal Investigator support is also acknowledged. The authors are also grateful to Prof. C. Sinturel for his valuable suggestions.

Return