Journal Home > Volume 8 , Issue 4

Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and better brightening effect than Gd@C82(OH)X, in T1-weighted MR images in vivo. This is a result of the proton relaxivity from the original gadofullerenes, which retained a perfect carbon cage structure and so might completely avoid the release of Gd3+ ions. A "secondary spin-electron transfer" relaxation mechanism was proposed to explain how the encaged Gd3+ ions of carbon nanohybrids interact with the surrounding water molecules. This approach opens new opportunities for developing highly efficient and low toxicity MRI contrast agents.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Novel carbon nanohybrids as highly efficient magnetic resonance imaging contrast agents

Show Author's information Rongli Cui§Juan Li§Huan HuangMingyi ZhangXihong GuoYanan ChangMin LiJinquan DongBaoyun Sun( )Gengmei Xing( )
CAS Key Laboratory for Biomedical Effects of Nanomaterial & NanosafetyInstitute of High Energy PhysicsChinese Academy of Science (CAS)Beijing100049China

§ These authors contributed equally to this work.

Abstract

Novel carbon nanohybrids based on unmodified metallofullerenes have been successfully fabricated for use as a new magnetic resonance imaging (MRI) contrast agent. The nanohybrids showed higher R1 relaxivity and better brightening effect than Gd@C82(OH)X, in T1-weighted MR images in vivo. This is a result of the proton relaxivity from the original gadofullerenes, which retained a perfect carbon cage structure and so might completely avoid the release of Gd3+ ions. A "secondary spin-electron transfer" relaxation mechanism was proposed to explain how the encaged Gd3+ ions of carbon nanohybrids interact with the surrounding water molecules. This approach opens new opportunities for developing highly efficient and low toxicity MRI contrast agents.

Keywords: magnetic resonance imaging (MRI), graphene oxide, nanohybrids, metallofullerene

References(35)

1

Bellin, M. F. MR contrast agents, the old and the new. Eur. J. Radiol. 2006, 60, 314–323.

2

Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Gadolinium(iii) chelates as MRI contrast agents: Structure, dynamics, and applications. Chem. Rev. 1999, 99, 2293–2352.

3

Weigle, J. P.; Broome, D. R. Nephrogenic systemic fibrosis: Chronic imaging findings and review of the medical literature. Skeletal Radiol. 2008, 37, 457–464.

4

Bolskar, R. D. Gadofullerene MRI contrast agents. Nanomedicine 2008, 3, 201–213.

5

Popov, A. A.; Yang, S.; Dunsch, L. Endohedral fullerenes. Chem. Rev. 2013, 113, 5989–6113.

6

Lu, X.; Feng, L.; Akasaka, T.; Nagase, S. Current status and future developments of endohedral metallofullerenes. Chem. Soc. Rev. 2012, 41, 7723–7760.

7

Mikawa, M.; Kato, H.; Okumura, M.; Narazaki, M.; Kanazawa, Y.; Miwa, N.; Shinohara, H. Paramagnetic water-soluble metallofullerenes having the highest relaxivity for MRI contrast agents. Bioconjugate Chem. 2001, 12, 510–514.

8

Kato, H.; Kanazawa, Y.; Okumura, M.; Taninaka, A.; Yokawa, T.; Shinohara, H. Lanthanoid endohedral metallofullerenols for MRI contrast agents. J. Am. Chem. Soc. 2003, 125, 4391–4397.

9

Toth, E.; Bolskar, R. D.; Borel, A.; Gonzalez, G.; Helm, L.; Merbach, A. E.; Sitharaman, B.; Wilson, L. J. Water-soluble gadofullerenes: Toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 2005, 127, 799–805.

10

Laus, S.; Sitharaman, B.; Toth, E.; Bolskar, R. D.; Helm, L.; Wilson, L. J.; Merbach, A. E. Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J. Phys. Chem. C 2007, 111, 5633–5639.

11

Nakamura, E.; Isobe, H. Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. Acc. Chem. Res. 2003, 36, 807–815.

12

Xing, G. M.; Zhang, J.; Zhao, Y. L., Z.; Tang, J.; Zhang, B.; Gao, X. F.; Yuan, H.; Qu, L.; Cao, W. B., C.; Chai, Z. F. et al. Influences of structural properties on stability of fullerenols. J. Phys. Chem. B 2004, 108, 11473–11479.

13

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

14

Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. Multiplexed aptasensors and amplified DNA sensors using functionalized graphene oxide: Application for logic gate operations. ACS Nano 2012, 6, 3553–3563.

15

Peng, C.; Hu, W. B.; Zhou, Y. T.; Fan, C. H.; Huang, Q. Intracellular imaging with a graphene-based fluorescent probe. Small 2010, 6, 1686–1692.

16

Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. Pegylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

17

Zhang, L. M.; Xia, J. G.; Zhao, Q. H.; Liu, L. W.; Zhang, Z. J. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010, 6, 537–544.

18

Bao, H. Q.; Pan, Y. Z.; Ping, Y.; Sahoo, N. G.; Wu, T. F.; Li, L.; Li, J.; Gan, L. H. Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 2011, 7, 1569–1578.

19

Liu, Q. H.; Wei, L.; Wang, J. Y.; Peng, F.; Luo, D.; Cui, R. L.; Niu, Y.; Qin, X. J.; Liu, Y.; Sun, H. et al. Cell imaging by graphene oxide based on surface enhanced Raman scattering. Nanoscale 2012, 4, 7084–7089.

20

Tian, L.; Meziani, M. J.; Lu, F.; Kong, C. Y.; Cao, L.; Thorne, T. J.; Sun, Y. P. Graphene oxides for homogeneous dispersion of carbon nanotubes. ACS Appl. Mater. Inter. 2010, 2, 3217–3222.

21

Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186.

22

Kim, F.; Cote, L. J.; Huang, J. Graphene oxide: Surface activity and two-dimensional assembly. Adv. Mater. 2010, 22, 1954–1958.

23

Cote, L. J.; Kim, J.; Tung, V. C.; Luo, J.; Kim, F.; Huang, J. Graphene oxide as surfactant sheets. Pure Appl. Chem. 2011, 83, 95–110.

24

Cai, W.; Piner, R. D.; Stadermann, F. J.; Park, S.; Shaibat, M. A.; Ishii, Y.; Yang, D.; Velamakanni, A.; An, S. J.; Stoller, M. et al. Synthesis and solid-state NMR structural characterization of 13C-labeled graphite oxide. Science 2008, 321, 1815–1817.

25

Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

26

Yang, X.; Zhang, X.; Liu, Z.; Ma, Y.; Huang, Y.; Chen, Y. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C 2008, 112, 17554–17558.

27

Zhang, C.; Ren, L.; Wang, X.; Liu, T. Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J. Phys. Chem. C 2010, 114, 11435–11440.

28

Tian, L.; Anilkumar, P.; Cao, L.; Kong, C. Y.; Meziani, M. J.; Qian, H.; Veca, L. M.; Thorne, T. J.; Tackett, K. N., II; Edwards, T. et al. Graphene oxides dispersing and hosting graphene sheets for unique nanocomposite materials. ACS Nano 2011, 5, 3052–3058.

29

Tung, V. C.; Huang, J. H.; Tevis, I.; Kim, F.; Kim, J.; Chu, C. W.; Stupp, S. I.; Huang, J. Surfactant-free water-processable photoconductive all-carbon composite. J. Am. Chem. Soc. 2011, 133, 4940–4947.

30

Li, Y.; Yang, J.; Zhao, Q.; Li, Y. Dispersing carbon-based nanomaterials in aqueous phase by graphene oxides. Langmuir 2013, 29, 13527–13534.

31

Nguyen, S. T.; Ruoff, R. S.; Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Yuanyuan, J.; Yue, W. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

32

Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 2008, 130, 5856–5857.

33

Zhou, Y.; Bao, Q.; Tang, L. A. L.; Zhong, Y.; Loh, K. P. Hydrothermal dehydration for the "Green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950–2956.

34

Laus, S.; Sitharaman, B.; Toth, V.; Bolskar, R. D.; Helm, L.; Asokan, S.; Wong, M. S.; Wilson, L. J.; Merbach, A. E. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)X and Gd@C60[C(COOH)2)]10. J. Am. Chem. Soc. 2005, 127, 9368–9369.

35

Sitharaman, B.; Bolskar, R. D.; Rusakova, I.; Wilson, L. J. Gd@C60[C(COOH)2]10 and Gd@C60(OH)X: Nanoscale aggregation studies of two metallofullerene MRI contrast agents in aqueous solution. Nano Lett. 2004, 4, 2373–2378.

File
12274_2014_613_MOESM1_ESM.pdf (1.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 July 2014
Revised: 13 October 2014
Accepted: 14 October 2014
Published: 22 November 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported financially by the National Basic Research Program of China (973 Program) (Nos. 2015CB932104, 2012CB932601), and the National Natural Science Foundation of China (Nos. 11405185, 21271174). We would like to acknowledge Prof. K. Ibrahim, Prof. J. Wang and other fellow research members at the Beijing Synchrotron Radiation Facility for helping with the XPS work, and X. Wang and F. Fang at Wuhan Institute of Physics and Mathematics, CAS.

Return