Journal Home > Volume 8 , Issue 4

We present a theoretical study of new nanostructures based on bilayered graphene with periodically arranged hexagonal holes (bilayered graphene antidots). Our ab initio calculations show that fabrication of hexagonal holes in bigraphene leads to connection of the neighboring edges of the two graphene layers with formation of a hollow carbon nanostructure sheet which displays a wide range of electronic properties (from semiconductor to metallic), depending on the size of the holes and the distance between them. The results were additionally supported by wave packet dynamical transport calculations based on the numerical solution of the time-dependent Schrödinger equation.


menu
Abstract
Full text
Outline
About this article

Bilayered semiconductor graphene nanostructures with periodically arranged hexagonal holes

Show Author's information Dmitry G. Kvashnin1( )Péter Vancsó2Liubov Yu. Antipina3Géza I. Márk2László P. Biró2Pavel B. Sorokin1,3Leonid A. Chernozatonskii1( )
Emanuel Institute of Biochemical Physics4 Kosigina StreetMoscow119334Russia
Institute of Technical Physics and Materials ScienceResearch Centre for Natural SciencesH-1525, Budapest, P.O.Box 49Hungary
Technological Institute of Superhard and Novel Carbon Materials7a Centralnaya StreetTroitskMoscow142190Russia

Abstract

We present a theoretical study of new nanostructures based on bilayered graphene with periodically arranged hexagonal holes (bilayered graphene antidots). Our ab initio calculations show that fabrication of hexagonal holes in bigraphene leads to connection of the neighboring edges of the two graphene layers with formation of a hollow carbon nanostructure sheet which displays a wide range of electronic properties (from semiconductor to metallic), depending on the size of the holes and the distance between them. The results were additionally supported by wave packet dynamical transport calculations based on the numerical solution of the time-dependent Schrödinger equation.

Keywords: electronic properties, gaphene, antidots, DFT

References(43)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang D.; Zhang Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

3

McCann, E.; Koshino, M. The electronic properties of bilayer graphene. Rep. Prog. Phys. 2013, 76, 056503.

4

McCann, E.; Fal'ko, V. I. Landau-level degeneracy and quantum hall effect in a graphite bilayer. Phys. Rev. Lett. 2006, 96, 086805.

5

Chernozatonskii, L. A.; Sorokin, P. B.; Brüning, J. W. Two-dimensional semiconducting nanostructures based on single graphenesheets with lines of adsorbed hydrogen atoms. Appl. Phys. Lett. 2007, 91, 183103.

6

Chernozatonskii, L. A.; Sorokin, P. B.; Belova, E. é.; Brüning, J.; Fedorov, A. S. Superlatticesconsisting of "lines" of adsorbed hydrogen atom pairs on graphene. JETP Lett. 2007, 85, 77–81.

7

Chernozatonskii, L. A.; Sorokin, P. B. Nanoengineeringstructures on graphenewith adsorbed hydrogen "lines". J. Phys. Chem. C 2010, 114, 3225–3229.

8

Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; Lopes dos Santos, J. M. B.; Nilsson, J.; Guinea, F.; Geim, A. K.; Castro Neto, A. H. Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 2007, 99, 216802.

9

Liu, X. F.; Zhang, Z. H.; Guo, W. L. Universal rule on chirality-dependent bandgapsin grapheneantidotlattices. Small 2013, 9, 1405–1410.

10

Pedersen, T. G.; Flindt, C.; Pedersen, J.; Jauho, A. -P.; Mortensen, N. A.; Pedersen, K. Optical properties of grapheneantidotlattices. Phys. Rev. B 2008, 77, 243431.

11

McCann, E. Asymmetry gap in the electronic band structure of bilayer graphene. Phys. Rev. B 2006, 74, 161403.

12

Nemes-Incze, P.; Magda, G.; Kamarás, K.; Biró, L. P. Crystallographicallyselective nanopatterningof grapheneon SiO2. Nano Res. 2010, 3, 110–116.

13

Dobrik, G.; Nemes-Incze, P.; Tapasztó, L.; Lambin, P.; Biró, L. P. Nanoscalelithography of graphenewith crystallographic orientation control. Physica E 2012, 44, 971–975.

14

Lee, J. -H.; Jang, Y.; Heo, K.; Lee, J. -M.; Choi, S. H.; Joo, W. -J.; Hwang, S. W.; Whang, D. Large-scale fabrication of 2D nanoporousgrapheneusing a thin anodic aluminum oxide etching mask. J. Nanosci. Nanotechnol. 2013, 13, 7401–7405.

15

Zubeltzu, J.; Chuvilin, A.; Corsetti, F.; Zurutuza, A.; Artacho, E. Knock-on damage in bilayer graphene: Indications for a catalytic pathway. Phys. Rev. B 2013, 88, 245407.

16

Bai, J. W.; Zhong, X.; Jiang, S.; Huang, Y.; Duan, X. F. Graphenenanomesh. Nat. Nanotechnol. 2010, 5, 190–194.

17

Dvorak, M.; Oswald, W.; Wu, Z. G. Bandgapopening by patterning graphene. Sci. Rep. 2013, 3, 2289.

18

Pedersen, T. G.; Flindt, C.; Pedersen, J.; Mortensen, N. A.; Jauho, A. -P.; Pedersen, K. Grapheneantidotlattices: Designed defects and spin qubits. Phys. Rev. Lett. 2008, 100, 136804.

19

Ouyang, F. P.; Peng, S. L.; Liu, Z. F.; Liu, Z. R. Bandgapopening in grapheneantidotlattices: The missing half. ACS Nano 2011, 5, 4023–4030.

20

Fürst, J. A.; Pedersen, J. G.; Flindt, C.; Mortensen, N. A.; Brandbyge, M.; Pedersen, T. G.; Jauho, A. -P. Electronic properties of grapheneantidotlattices. New J. Phys. 2009, 11, 095020.

21

Sinitskii, A.; Tour, J. M. Patterning graphenethrough the self-assembled templates: Toward periodic two-dimensional graphenenanostructures with semiconductor properties. J. Am. Chem. Soc. 2010, 132, 14730–14732.

22

Kim, M.; Safron, N. S.; Han, E.; Arnold, M. S.; Gopalan, P. Fabrication and characterization of large-area, semiconducting nanoperforatedgraphenematerials. Nano Lett. 2010, 10, 1125–1131.

23

Liu, Z.; Suenaga, K.; Harris, P. J. F.; Iijima, S. Open and closed edges of graphenelayers. Phys. Rev. Lett. 2009, 102, 015501.

24

Campos-Delgado, J.; Kim, Y. A.; Hayashi, T.; Morelos-Gómez, A.; Hofmann, M.; Muramatsu, H.; Endo, M.; Terrones, H.; Shull, R. D.; Dresselhaus, M. S.; et al. Thermal stability studies of CVD-grown graphenenanoribbons: Defect annealing and loop formation. Chem. Phys. Lett. 2009, 469, 177–182.

25

Algara-Siller, G.; Santana, A.; Onions, R.; Suyetin, M.; Biskupek, J.; Bichoutskaia, E.; Kaiser, U. Electron-beam engineering of single-walled carbon nanotubes from bilayer graphene. Carbon 2013, 65, 80–86.

26

Zhan, D.; Liu, L.; Xu, Y. N.; Ni, Z. H.; Yan, J. X.; Zhao, C.; Shen, Z. X. Low temperature edge dynamics of AB-stacked bilayer graphene: Naturally favored closed zigzag edges. Sci. Rep. 2011, 1, 12.

27

Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The siesta method for abinitioorder-Nmaterials simulation. J. Phys. : Condens. Mat. 2002, 14, 2745–2779.

28

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

29

Elstner, M.; Porezag, D.; Jungnickel, G.; Elsner, J.; Haugk, M.; Frauenheim, T.; Suhai, S.; Seifert, G. Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys. Rev. B 1998, 58, 7260–7268.

30

Garraway, B. M.; Suominen, K. -A. Wave-packet dynamics: New physics and chemistry in femto-time. Rep. Prog. Phys. 1995, 58, 365–419.

31

Vancsó, P.; Márk, G. I.; Lambin, P.; Mayer, A.; Hwang, C.; Biró, L. P. Effect of the disorder in graphenegrain boundaries: Awave packet dynamics study. Appl. Surf. Sci. 2014, 291, 58–63.

32

Mayer, A. Band structure and transport properties of carbon nanotubes using a local pseudopotentialand a transfer-matrix technique. Carbon 2004, 42, 2057–2066.

33

Mayer, A. Transfer-matrix simulations of electronic transport in single-wall and multi-wall carbon nanotubes. Carbon 2005, 43, 717–726.

34

Vancsó, P.; Márk, G. I.; Lambin, P.; Mayer, A.; Kim, Y. S.; Hwang, C.; Biró, L. P. Electronic transport through ordered and disordered graphenegrain boundaries. Carbon 2013, 64, 101–110.

35

Márk, G. I.; Biró, L. P.; Gyulai, J. Simulation of STMimages of three-dimensional surfaces and comparison with experimental data: Carbon nanotubes. Phys. Rev. B 1998, 58, 12645–12648.

36

Márk, G. I.; Vancsó, P.; Hwang, C.; Lambin, P.; Biró, L. P. Anisotropic dynamics of charge carriers in graphene. Phys. Rev. B 2012, 85, 125443.

37

Scuracchio, P.; Dobry, A. Bending mode fluctuations and structural stability of graphenenanoribbons. Phys. Rev. B 2013, 87, 165411.

38

Kit, O. O.; Tallinen, T.; Mahadevan, L.; Timonen, J.; Koskinen, P. Twisting graphenenanoribbonsinto carbon nanotubes. Phys. Rev. B 2012, 85, 085428.

39

Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A. P.; Gao, J. B.; Haddon, R. C. Electronic properties of single-walled carbon nanotube networks. J. Am. Chem. Soc. 2005, 127, 5990–5995.

40

Timmermans, M. Y.; Estrada, D.; Nasibulin, A. G.; Wood, J. D.; Behnam, A.; Sun, D. -M.; Ohno, Y.; Lyding, J. W.; Hassanien, A.; Pop, E.; et al. Effect of carbon nanotube network morphology on thin film transistor performance. Nano Res. 2012, 5, 307–319.

41

Chernozatonskii, L. A.; Demin, V. A. Nanotube connections in bilayer graphene with elongated holes. In Proceedings of the International Conference in Nanomaterials: Applications and Properties, Alushta, the Crimea, 2013, pp. 03NCNN32-03NCNN34.

42

Chernozatonskii, L. A.; Demin, V. A.; Artyukh, A. A. Bigraphenenanomeshes: Structure, properties, and formation. JETP Lett. 2014, 99, 309–314.

43

Chernozatonskii, L. A. Carbon nanotube connectors and planar jungle gyms. Phys. Lett. A 1992, 172, 173–176.

Publication history
Copyright
Acknowledgements

Publication history

Received: 18 July 2014
Revised: 10 September 2014
Accepted: 13 October 2014
Published: 21 November 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by an EU Marie Curie International Research Staff Exchange Scheme Fellowship within the 7th European Community Framework Programme (MC-IRSES proposal 318617 FAEMCAR project) OTKA 101599 in Hungary. We are grateful to the Joint Supercomputer Center of the Russian Academy of Sciences and "Lomonosov" research computing center for the possibilities of using a cluster computer for the quantum-chemical calculations. D.G.K. acknowledges the support from the Russian Ministry of Education and Science (No. 948 from 21 of November 2012).

Return