Journal Home > Volume 8 , Issue 1

A novel two-phase approach towards the corrosion of PtNi10 nanoctahedra has been developed. In this strategy, the active component of Ni in oil-soluble PtNi10 nanoctahedra which resided in the upper toluene phase, suffered from etching and was then transferred into a lower aqueous phase with coordination by ethylenediaminetetraacetate (EDTA). Due to the existence of the phase-transfer interface promoted by EDTA, the corrosion reaction proceeded at an accelerated rate under the mild conditions. Specifically, the resultant products of octahedral Pt4Ni nanoframes were successfully fabricated for the first time, and PtNi4 porous octahedra could be obtained when the dosage of EDTA-2Na was reduced. After a systematic study of this two-phase system, a "synergetic corrosion" mechanism is proposed to account for the formation of octahedral Pt4Ni nanoframes, involving contributions from many species (i.e., O2, H2O, H+, OAm, and EDTA4-). As a result of the fascinating three-dimensional geometry of Pt4Ni nanoframes and PtNi4 porous octahedra, both of the corroded nanocrystals showed superior activity over the pristine PtNi10 nanoctahedra for ethanol electrooxidation in alkaline media and hydrogenation of nitrobenzene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Phase-transfer interface promoted corrosion from PtNi10 nanoctahedra to Pt4Ni nanoframes

Show Author's information Yu WangYueguang ChenCaiyun NanLingling LiDingsheng WangQing Peng( )Yadong Li( )
Department of ChemistryTsinghua UniversityBeijing100084China

Abstract

A novel two-phase approach towards the corrosion of PtNi10 nanoctahedra has been developed. In this strategy, the active component of Ni in oil-soluble PtNi10 nanoctahedra which resided in the upper toluene phase, suffered from etching and was then transferred into a lower aqueous phase with coordination by ethylenediaminetetraacetate (EDTA). Due to the existence of the phase-transfer interface promoted by EDTA, the corrosion reaction proceeded at an accelerated rate under the mild conditions. Specifically, the resultant products of octahedral Pt4Ni nanoframes were successfully fabricated for the first time, and PtNi4 porous octahedra could be obtained when the dosage of EDTA-2Na was reduced. After a systematic study of this two-phase system, a "synergetic corrosion" mechanism is proposed to account for the formation of octahedral Pt4Ni nanoframes, involving contributions from many species (i.e., O2, H2O, H+, OAm, and EDTA4-). As a result of the fascinating three-dimensional geometry of Pt4Ni nanoframes and PtNi4 porous octahedra, both of the corroded nanocrystals showed superior activity over the pristine PtNi10 nanoctahedra for ethanol electrooxidation in alkaline media and hydrogenation of nitrobenzene.

Keywords: catalytic activity, corrosion, nanoframes, porous octahedra, phase-transfer interface, EDTA

References(52)

1

Chen, J.; McLellan, J. M.; Siekkinen, A.; Xiong, Y.; Li, Z. -Y.; Xia, Y. Facile synthesis of gold-silver nanocages with controllable pores on the surface. J. Am. Chem. Soc. 2006, 128, 14776-14777.

2

Macdonald, J. E.; Bar Sadan, M.; Houben, L.; Popov, I.; Banin, U. Hybrid nanoscale inorganic cages. Nat. Mater. 2010, 9, 810-815.

3

Gilroy, K.; Sundar, A.; Farzinpour, P.; Hughes, R.; Neretina, S. Mechanistic study of substrate-based galvanic replacement reactions. Nano Res. 2014, 7, 365-379.

4

Sun, Y.; Wiley, B.; Li, Z. -Y.; Xia, Y. Synthesis and optical properties of nanorattles and multiple-walled nanoshells/nanotubes made of metal alloys. J. Am. Chem. Soc. 2004, 126, 9399-9406.

5

Xie, S.; Lu, N.; Xie, Z.; Wang, J.; Kim, M. J.; Xia, Y. Synthesis of Pd-Rh core-frame concave nanocubes and their conversion to Rh cubic nanoframes by selective etching of the Pd cores. Angew. Chem. Int. Ed. 2012, 51, 10266-10270.

6

McEachran, M.; Keogh, D.; Pietrobon, B.; Cathcart, N.; Gourevich, I.; Coombs, N.; Kitaev, V. Ultrathin gold nanoframes through surfactant-free templating of faceted pentagonal silver nanoparticles. J. Am. Chem. Soc. 2011, 133, 8066-8069.

7

Wang, S. -B.; Zhu, W.; Ke, J.; Gu, J.; Yin, A. -X.; Zhang, Y. -W.; Yan, C. -H. Porous Pt-M (M = Cu, Zn, Ni) nanoparticles as robust nanocatalysts. Chem. Commun. 2013, 49, 7168-7170.

8

Xia, B. Y.; Wu, H. B.; Wang, X.; Lou, X. W. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction. J. Am. Chem. Soc. 2012, 134, 13934-13937.

9

Zhang, H.; Jin, M.; Liu, H.; Wang, J.; Kim, M. J.; Yang, D.; Xie, Z.; Liu, J.; Xia, Y. Facile Synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 2011, 5, 8212-8222.

10

Wu, H.; Wang, P.; He, H.; Jin, Y. Controlled synthesis of porous Ag/Au bimetallic hollow nanoshells with tunable plasmonic and catalytic properties. Nano Res. 2012, 5, 135-144.

11

Schwartzberg, A. M.; Olson, T. Y.; Talley, C. E.; Zhang, J. Z. Synthesis, characterization, and tunable optical properties of hollow gold nanospheres. J. Phys. Chem. B 2006, 110, 19935-19944.

12

Yavuz, M. S.; Cheng, Y.; Chen, J.; Cobley, C. M.; Zhang, Q.; Rycenga, M.; Xie, J.; Kim, C.; Song, K. H.; Schwartz, A. G.; et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat. Mater. 2009, 8, 935-939.

13

Panfilova, E.; Shirokov, A.; Khlebtsov, B.; Matora, L.; Khlebtsov, N. Multiplexed dot immunoassay using Ag nanocubes, Au/Ag alloy nanoparticles, and Au/Ag nanocages. Nano Res. 2012, 5, 124-134.

14

Xia, Y.; Li, W.; Cobley, C. M.; Chen, J.; Xia, X.; Zhang, Q.; Yang, M.; Cho, E. C.; Brown, P. K. Gold nanocages: From synthesis to theranostic applications. Acc. Chem. Res. 2011, 44, 914-924.

15

Nosheen, F.; Zhang, Z. -C.; Zhuang, J.; Wang, X. One-pot fabrication of single-crystalline octahedral Pt-Cu nanoframes and their enhanced electrocatalytic activity. Nanoscale 2013, 5, 3660-3663.

16

Snyder, J.; McCue, I.; Livi, K.; Erlebacher, J. Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 8633-8645.

17

Wu, J.; Zhang, J.; Peng, Z.; Yang, S.; Wagner, F. T.; Yang, H. Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J. Am. Chem. Soc. 2010, 132, 4984-4985.

18

Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 2013, 12, 765-771.

19

Wang, C.; Chi, M.; Li, D.; Strmcnik, D.; van der Vliet, D.; Wang, G.; Komanicky, V.; Chang, K. -C.; Paulikas, A. P.; Tripkovic, D.; et al. Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J. Am. Chem. Soc. 2011, 133, 14396-14403.

20

Wu, Y.; Cai, S.; Wang, D.; He, W.; Li, Y. Syntheses of water-soluble octahedral, truncated octahedral, and cubic Pt-Ni Nanocrystals and their structure-activity study in model hydrogenation reactions. J. Am. Chem. Soc. 2012, 134, 8975-8981.

21

Wu, Y.; Wang, D.; Niu, Z.; Chen, P.; Zhou, G.; Li, Y. A strategy for designing a concave Pt-Ni alloy through controllable chemical etching. Angew. Chem. Int. Ed. 2012, 51, 12524-12528.

22

Zhang, Z.; Yang, Y.; Nosheen, F.; Wang, P.; Zhang, J.; Zhuang, J.; Wang, X. Fine Tuning of the structure of Pt-Cu alloy nanocrystals by glycine-mediated sequential reduction kinetics. Small 2013, 9, 3063-3069.

23

Wang, Y. -X.; Zhou, H. -J.; Sun, P. -C.; Chen, T. -H. Exceptional methanol electro-oxidation activity by bimetallic concave and dendritic Pt-Cu nanocrystals catalysts. J. Power Sources 2014, 245, 663-670.

24

Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339-1343.

25

Wu, Y.; Wang, D.; Zhou, G.; Yu, R.; Chen, C.; Li, Y. Sophisticated construction of Au islands on Pt-Ni: An ideal trimetallic nanoframes catalyst. J. Am. Chem. Soc. 2014, 136, 11594-11597.

26

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801-802.

27

Zhuang, Z.; Peng, Q.; Wang, X.; Li, Y. Tetrahedral colloidal crystals of Ag2S nanocrystals. Angew. Chem. 2007, 119, 8322-8325.

28

Zhuang, Z.; Peng, Q.; Zhang, B.; Li, Y. Controllable synthesis of Cu2S nanocrystals and their assembly into a superlattice. J. Am. Chem. Soc. 2008, 130, 10482-10483.

29

Pan, D.; Wang, Q.; An, L. Controlled synthesis of monodisperse nanocrystals by a two-phase approach without the separation of nucleation and growth processes. J. Mater. Chem. 2009, 19, 1063-1073.

30

Xu, C.; Shen, P. K. Novel Pt/CeO2/C catalysts for electrooxidation of alcohols in alkaline media. Chem. Commun. 2004, 2238-2239.

31

Zhang, J.; Fang, J. A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J. Am. Chem. Soc. 2009, 131, 18543-18547.

32

Zhang, J.; Yang, H.; Fang, J.; Zou, S. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638-644.

33

Wu, J.; Gross, A.; Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 2011, 11, 798-802.

34

Wang, C.; Chi, M.; Wang, G.; van der Vliet, D.; Li, D.; More, K.; Wang, H. -H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv. Funct. Mater. 2011, 21, 147-152.

35

Choi, S. I.; Xie, S.; Shao, M.; Odell, J. H.; Lu, N.; Peng, H. C.; Protsailo, L.; Guerrero, S.; Park, J.; Xia, X.; et al. Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett. 2013, 13, 3420-3425.

36

Chou, S. -W.; Lai, Y. -R.; Yang, Y. Y.; Tang, C. -Y.; Hayashi, M.; Chen, H. -C.; Chen, H. -L.; Chou, P. -T. Uniform size and composition tuning of PtNi octahedra for systematic studies of oxygen reduction reactions. J. Catal. 2014, 309, 343-350.

37

Yang, B.; Li, J.; Wang, J.; Xu, H.; Guang, S.; Li, C. Poly(vinyl pyrrolidone-co-octavinyl polyhedral oligomeric silsesquioxane) hybrid nanocomposites: Preparation, thermal properties, and Tg improvement mechanism. J. Appl. Polym. Sci. 2009, 111, 2963-2969.

38

Xu, Z.; Shen, C.; Hou, Y.; Gao, H.; Sun, S. Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chem. Mater. 2009, 21, 1778-1780.

39

Yuan, Q.; Zhou, Z.; Zhuang, J.; Wang, X. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem. Commun. 2010, 46, 1491-1493.

40

Wu, Y.; Wang, D.; Chen, X.; Zhou, G.; Yu, R.; Li, Y. Defect-dominated shape recovery of nanocrystals: A new strategy for trimetallic catalysts. J. Am. Chem. Soc. 2013, 135, 12220-12223.

41
Li, L. L.; Zhang, Q. -W.; Wang, D. S.; He, W.; Li, Y. D. Unpublished results.
42

Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892-3901.

43

Xiong, Y.; Wiley, B.; Chen, J.; Li, Z. Y.; Yin, Y.; Xia, Y. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew. Chem. Int. Ed. 2005, 44, 7913-7917.

44

González, E.; Arbiol, J.; Puntes, V. F. Carving at the nanoscale: Sequential galvanic exchange and Kirkendall growth at room temperature. Science 2011, 334, 1377-1380.

45

Sneed, B. T.; Brodsky, C. N.; Kuo, C. -H.; Lamontagne, L. K.; Jiang, Y.; Wang, Y.; Tao, F.; Huang, W.; Tsung, C. -K. Nanoscale-phase-separated Pd-Rh boxes synthesized via metal migration: An archetype for studying lattice strain and composition effects in electrocatalysis. J. Am. Chem. Soc. 2013, 135, 14691-14700.

46

Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733-1739.

47

Sun, B.; Zhao, F. J.; Lombi, E.; McGrath, S. P. Leaching of heavy metals from contaminated soils using EDTA. Environ. Pollut. 2001, 113, 111-120.

48

Liu, X.; Wang, W.; Li, H.; Li, L.; Zhou, G.; Yu, R.; Wang, D.; Li, Y. One-pot protocol for bimetallic Pt/Cu hexapod concave nanocrystals with enhanced electrocatalytic activity. Sci. Rep. 2013, 3, 1404.

49

Kang, Y.; Murray, C. B. Synthesis and electrocatalytic properties of cubic Mn-Pt nanocrystals (nanocubes). J. Am. Chem. Soc. 2010, 132, 7568-7569.

50

Crespo-Quesada, M.; Andanson, J. -M.; Yarulin, A.; Lim, B.; Xia, Y.; Kiwi-Minsker, L. UV-ozone cleaning of supported poly (vinylpyrrolidone)-stabilized palladium nanocubes: Effect of stabilizer removal on morphology and catalytic behavior. Langmuir 2011, 27, 7909-7916.

51

Yin, A. X.; Min, X. Q.; Zhu, W.; Liu, W. C.; Zhang, Y. W.; Yan, C. H. Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem. Eur. J. 2012, 18, 777-782.

52

Blaser, H. U.; Steiner, H.; Studer, M. Selective catalytic hydrogenation of functionalized nitroarenes: An update. ChemCatChem 2009, 1, 210-221.

File
12274_2014_603_MOESM1_ESM.pdf (4.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 25 August 2014
Revised: 23 September 2014
Accepted: 30 September 2014
Published: 07 November 2014
Issue date: January 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

We appreciate the financial support from the National Natural Science Foundation of China (21325101, 21171105, 21231005). We also thank Wenjun Jiang the measurement of FT-IR spectra.

Return