Journal Home > Volume 8 , Issue 4

Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicator, which can detect and quantify a broader biogenic pH range with superior sensitivity compared to pre-established trafficking agents employing one-dimensional turn-on of the fluorescence resonance-energy-transfer (FRET) signal. We fabricated polyaniline-based nanoprobes, which exhibited convertible transition states according to the proton levels, as an in situ indicator of vesicular transport pH. Silica-coated Fe3O4-MnO heterometal nanoparticles were synthesised and utilised as a metal oxidant to polymerise the aniline monomer. Finally, silica-coated polyaniline nanoparticles with adsorbed cyanine dye fluorophores Cy3 and Cy7 (FPSNICy3 and FPSNICy7) were fabricated as proton-sensitive nanoindicators. Owing to the selective quenching induced by the local pH variations of vesicular transport, FPSNICy3 and FPSNICy7 demonstrated excellent intracellular trafficking and provided sensitive optical indication of minute proton levels.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Colourimetric redox-polyaniline nanoindicator for in situ vesicular trafficking of intracellular transport

Show Author's information Eun Bi Choi1,§Jihye Choi1,§Seo Ryung Bae1Hyun-Ouk Kim1Eunji Jang1Byunghoon Kang1Myeong-Hoon Kim1Byeongyoon Kim3Jin-Suck Suh2Kwangyeol Lee3Yong-Min Huh2( )Seungjoo Haam1( )
Department of Chemical and Biomolecular EngineeringCollege of Engineering, Yonsei University, Seoul, 120-749Republic of Korea
Department of RadiologyCollege of Medicine, Yonsei UniversitySeoul120-752Republic of Korea
Department of ChemistryKorea UniversitySeoul136-701Republic of Korea

§ These authors contributed equally to this work.

Abstract

Vesicular pH modulates the function of many organelles and plays a pivotal role in cell metabolism processes such as proliferation and apoptosis. Here, we introduce a simple colorimetric redox-polyaniline nanoindicator, which can detect and quantify a broader biogenic pH range with superior sensitivity compared to pre-established trafficking agents employing one-dimensional turn-on of the fluorescence resonance-energy-transfer (FRET) signal. We fabricated polyaniline-based nanoprobes, which exhibited convertible transition states according to the proton levels, as an in situ indicator of vesicular transport pH. Silica-coated Fe3O4-MnO heterometal nanoparticles were synthesised and utilised as a metal oxidant to polymerise the aniline monomer. Finally, silica-coated polyaniline nanoparticles with adsorbed cyanine dye fluorophores Cy3 and Cy7 (FPSNICy3 and FPSNICy7) were fabricated as proton-sensitive nanoindicators. Owing to the selective quenching induced by the local pH variations of vesicular transport, FPSNICy3 and FPSNICy7 demonstrated excellent intracellular trafficking and provided sensitive optical indication of minute proton levels.

Keywords: pH, conducting polymer, redox, intracellular compartments, organic quencher, nanoindicator

References(35)

1

Chiu, Y. -L.; Chen, S. -A.; Chen, J. -H.; Chen, K. -J.; Chen, H. -L.; Sung, H. -W. A dual-emission Förster resonance energy transfer nanoprobe for sensing/imaging pH changes in the biological environment. ACS Nano 2010, 4, 7467–7474.

2

Han, J.; Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 2010, 110, 2709–2728.

3

Andreev, O. A.; Dupuy, A. D.; Segala, M.; Sandugu, S.; Serra, D. A.; Chichester, C. O.; Engelman, D. M.; Reshetnyak, Y. K. Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 7893–7898.

4

Schafer, F. Q.; Buettner, G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 2011, 30, 1191–1212.

5

Lewis, J. G.; Lin, K.Y.; Kothavale, A.; Flanagan, W. M.; Matteucci, M. D.; Deprince, R. B.; Mook, R. A.; Hendren, R. A.; Wagner, R. W. A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 3176–3181.

6

Liu, Y.; Reineke, T. M. Poly(glycoamidoamine)s for gene delivery. Structural effects on cellular internalization, buffering capacity, and gene expression. Bioconjugate Chem. 2007, 18, 19–30.

7

Busa, W. B.; Nuccitelli, R. Metabolic regulation via intracellular pH. Am. J. Physiol. 1984, 246, R409–438.

8

Casey, J. R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell. Biol. 2010, 11, 50–61.

9

Reineke, T. M.; Davis, M. E. Structural effects of carbohydrate-containing polycations on gene delivery. 2. Charge center type. Bioconjugate Chem. 2003, 14, 255–261.

10

Perez-Sala, D.; Collado-Escobar, D.; Mollinedo, F. Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease. J. Biol. Chem. 1995, 270, 6235–6242.

11

Shi, W.; Li, X.; Ma, H. A tunable ratiometric pH sensor based on carbon nanodots for the quantitative measurement of the intracellular pH of whole cells. Angew. Chem. Int. Edit. 2012, 51, 6432–6435.

12

Peng, H. S.; Stolwijk, J. A.; Sun, L. N.; Wegener, J.; Wolfbeis, O. S. A nanogel for ratiometric fluorescent sensing of intracellular pH values. Angew. Chem. Int. Edit. 2010, 49, 4246–4249.

13

Davies, T. A.; Fine, R. E.; Johnson, R. J.; Levesque, C. A.; Rathbun, W. H.; Seetoo, K. F.; Smith, S. J.; Strohmeier, G.; Volicer, L.; Delva, L.; Simons, E.R. Non-age related differences in thrombin responses by platelets from male patients with advanced Alzheimer's disease. Biochem. Biophy. Res. Commun. 1993, 194, 537–543.

14

Izumi, H.; Torigoe, T.; Ishiguchi, H.; Uramoto, H.; Yoshida, Y.; Tanabe, M.; Ise, T.; Murakami, T.; Yoshida, T.; Nomoto, M.; Kohno, K. Cellular pH regulators: Potentially promising molecular targets for cancer chemotherapy. Cancer. Treat. Rev. 2003, 29, 541–549.

15

Loiselle, F. B.; Casey, J. R. Measurement of cell pH. Methods Mol. Biol. 2003, 227, 259–280.

16

Wray, S. Smooth muscle function and intracellular pH: Measurement, regulation and function. Am. J. Physiol. 1988, 254, C213–C225.

17

Mátyus, L.; Szöllosi, J.; Jenei, A. Steady-state fluorescence quenching applications for studying protein structure and dynamics. J. Photochem. Photobiol. B: Biol. 2006, 83, 223–236.

18

Zhuang, X.; Ha, T.; Kim, H. D.; Centner, T.; Labeit, S.; Chu, S. Fluorescence quenching: A tool for single-molecule protein-folding study. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14241–14244.

19

Coupland, P. G.; Briddon, S. J.; Aylott, J. W. Using fluorescent pH-sensitive nanosensors to report their intracellular location after Tat-mediated delivery. Integr. Biol. 2009, 1, 318–323.

20

Uchiyama, S.; Makino, Y. Digital fluorescent pH sensors. Chem. Comm. 2009, 2646–2648.

21

Knoll, W.; Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 1998, 49, 569–638.

22

Febvay, S.; Marini, D. M.; Belcher, A. M.; Clapham, D. E. Targeted cytosolic delivery of cell-impermeable compounds by nanoparticle-mediated, light-triggered endosome disruption. Nano. Lett. 2010, 10, 2211–2219.

23

Li, N.; Chang, C.; Pan, W.; Tang, B. A multicolor nanoprobe for detection and imaging of tumor-related mrnas in living cells. Angew. Chem. Int. Edit. 2012, 51, 7426–7430.

24

Gizdavic-Nikolaidis, M.; Travas-Sejdic, J.; Bowmaker, G. A.; Cooney, R. P.; Kilmartin, P. A. Conducting polymers as free radical scavengers. Synth. Metals 2004, 140, 225–232.

25

Nakayama, M.; Tagashira, H.; Electrodeposition of layered manganese oxide nanocomposites intercalated with strong and weak polyelectrolytes. Langmuir 2006, 22, 3864–3869.

26

Yang, J.; Choi, J.; Bang, D.; Kim E.; Lim, E. -K.; Park, H.; Suh J. -S.; Lee, K.; Yoo, K. -H.; Kim, E. -K.; et al. Convertible organic nanoparticles for near-infrared photothermal ablation of cancer cells. Angew. Chem. Int. Edit. 2011, 50, 441–444.

27

Choi, J.; Hong, Y.; Lee, E.; Kim, M. -H.; Yoon, D. S.; Suh, J.; Huh, Y.; Haam, S.; Yang J. Redox-sensitive colorimetric polyaniline nanoprobes synthesized by a solvent-shift process. Nano. Res. 2013, 6, 356–364.

28

Leff, D. V.; Ohara, P. C.; Heath, J. R.; Gelbart, W. M. Thermodynamic control of gold nanocrystal size: Experiment and theory. J. Phys. Chem. 1995, 99, 7036–7041.

29

Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, 12278–12285.

30

Guo, S. R.; Gong, J. -Y.; Jiang, P.; Wu, M.; Lu, Y.; Yu, S. H. Biocompatible, luminescent silver@phenol formaldehyde resin core/shell nanospheres: Large-scale synthesis and application for in vivo bioimaging. Adv. Funct. Mater. 2008, 18, 872–879.

31

Phan, V. N.; Lim, E. -K.; Kim, T.; Kim, M.; Choi, Y.; Kim, B.; Lee, M.; Oh, A.; Jin, J.; Chae, Y.; et al. A highly crystalline manganese-doped iron oxide nanocontainer with predesigned void volume and shape for theranostic applications. Adv. Mater. 2013, 25, 3202–3208.

32

Kamata, K.; Lu, Y.; Xia, Y. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J. Am. Chem. Soc. 2003, 125, 2384–2385.

33

Caruso, F.; Caruso, R. A.; Möhwald, H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science 1998, 282, 1111–1114.

34

Jang, J.; Ha, J.; Lim, B. Synthesis and characterization of monodisperse silica-polyaniline core-shell nanoparticles. Chem. Comm. 2006, 1622–1624.

35

Maxfield, F. R.; Yamashiro, D. J. Endosome acidification and the pathways of receptor-mediated endocytosis. Adv. Exp. Med. Biol. 1987, 225, 189–198.

File
12274_2014_597_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 May 2014
Revised: 29 September 2014
Accepted: 01 October 2014
Published: 29 November 2014
Issue date: April 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the BioNano Health- Guard Research Center funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea as Global Frontier Project (H-GUARD_2013-11-2072) and the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2010-0019923).

Return