Journal Home > Volume 8 , Issue 1

Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe-based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.


menu
Abstract
Full text
Outline
About this article

A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts

Show Author's information Ming GongHongjie Dai( )
Department of ChemistryStanford UniversityStanfordCA94305USA

Abstract

Oxygen evolution reaction (OER) electrolysis, as an important reaction involved in water splitting and rechargeable metal-air batteries, has attracted increasing attention for clean energy generation and efficient energy storage. Nickel/iron (NiFe)-based compounds have been known as active OER catalysts since the last century, and renewed interest has been witnessed in recent years on developing advanced NiFe-based materials for better activity and stability. In this review, we present the early discovery and recent progress on NiFe-based OER electrocatalysts in terms of chemical properties, synthetic methodologies and catalytic performances. The advantages and disadvantages of each class of NiFe-based compounds are summarized, including NiFe alloys, electrodeposited films and layered double hydroxide nanoplates. Some mechanistic studies of the active phase of NiFe-based compounds are introduced and discussed to give insight into the nature of active catalytic sites, which could facilitate further improving NiFe based OER electrocatalysts. Finally, some applications of NiFe-based compounds for OER are described, including the development of an electrolyzer operating with a single AAA battery with voltage below 1.5 V and high performance rechargeable Zn-air batteries.

Keywords: electrocatalysis, oxygen evolution reaction, water splitting, nickel-iron

References(92)

1

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and non legacy worlds. Chem. Rev. 2010, 110, 6474-6502.

2

Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 2009, 1, 7.

3

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253-278.

4

Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729-15735.

5

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Dai, H. J. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013-2036.

6

Walter, M. G.; Warren, E. L.; Mckone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446-6473.

7

Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088-3113.

8

Crabtree, G. W.; Dresselhaus, M. S.; Buchanan, M. V. The hydrogen economy. Phys Today 2004, 57, 39-44.

9

Dresselhaus, M. S.; Thomas, I. L. Alternative energy technologies. Nature 2001, 414, 332-337.

10

Choi, C. L.; Feng, J.; Li, Y. G.; Wu, J.; Zak, A.; Tenne, R. WS2 nanoflakes from nanotubes for electrocatalysis. Nano Res. 2013, 6, 921-928.

11

Carmo, M.; Fritz, D. L.; Merge, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901-4934.

12

Gong, M.; Zhou, W.; Tsai, M. C.; Zhou, J. G.; Guan, M. Y.; Lin, M. C.; Zhang, B.; Hu, Y. F.; Wang, D. Y.; Jiang, J. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. commun. 2014, 5, 4695.

13

Holladay, J. D.; Hu, J.; King, D. L.; Wang, Y. An overview of hydrogen production technologies. Catal. Today 2009, 139, 244-260.

14

Zeng, K.; Zhang, D. K. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energ. Combust. 2010, 36, 307-326.

15

Wu, J.; Xue, Y.; Yan, X.; Yan, W. S.; Chen, Q. M.; Xie, Y. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 2012, 5, 521-530.

16

Tueysuez, H.; Hwang, Y. J.; Khan, S. B.; Asiri, A. M.; Yang, P. Mesoporous Co3O4 as an electrocatalyst for water oxidation. Nano Res. 2013, 6, 47-54.

17

Dau, H.; Limberg, C.; Reier, T.; Risch, M.; Roggan, S.; Strasser, P. The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. Chemcatchem 2010, 2, 724-761.

18

Jiao, F.; Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energ. Environ. Sci. 2010, 3, 1018-1027.

19

Mills, A. Heterogeneous redox catalysts for oxygen and chlorine evolution. Chem. Soc. Rev. 1989, 18, 285-316.

20

Yagi, M.; Kaneko, M. Molecular catalysts for water oxidation. Chem. Rev. 2001, 101, 21-35.

21

Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072-1075.

22

Koper, M. T. M. Thermodynamic theory of multi-electron transfer reactions: Implications for electrocatalysis. J. Electroanal. Chem. 2011, 660, 254-260.

23

Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 2012, 3, 399-404.

24

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977-16987.

25

Over, H. Surface chemistry of Ruthenium dioxide in heterogeneous catalysis and electrocatalysis: From fundamental to applied research. Chem. Rev. 2012, 112, 3356-3426.

26

Foerster, F.; Piguet, A. On the understanding of anodic formation of oxygen. Z. Angew. Phys. Chem. 1904, 10, 714-721.

27

Seiger, H. N.; Shair, R. C. Oxygen evolution from heavily doped nikel oxide electrodes. J. Electrochem. Soc. 1961, 108, C163.

28

Tichenor, R. L. Nickel oxides relation between electrochemical reactivity and foreign ion content. Ind. Eng. Chem. 1952, 44, 973-977.

29

Troilius, G.; Alfelt, G. The migration of iron in alkaline nickel-cadmium cells with pocket electrodes. Proceedings of the Fifth International Symposium on Power Sources, Brighton, UK, 1967. pp 337-348.

30

Falk, S. U.; Salkind, A. J. Alkaline storage batteries. Wiley: New York, 1969.

DOI
31

Munshi, M. Z. A.; Tseung, A. C. C.; Parker, J. The dissolution of iron from the negative material in pochet plate nickel cadmium batteries. J. Appl. Electrochem. 1985, 15, 711-717.

32

Hickling, A.; Hill, S. Oxygen overvoltage. 1. The influence of electrode material, current density, and time in aqueous solution. Discuss. Faraday. Soc. 1947, 1, 236-246.

33

Cordoba, S. I.; Carbonio, R. E.; Teijelo, M. L.; Macagno, V. A. The effect of the preparation method of mixed nickel iron hydroxide electrodes on the oxygen evolution reaction. J. Electrochem. Soc. 1986, 133, C300.

34

Corrigan, D. A. The catalysis of the oxygen evolution reaction by iron impurities in thin-film nickel-oxide electrodes. J. Electrochem. Soc. 1987, 134, 377-384.

35

Mlynarek, G.; Paszkiewicz, M.; Radniecka, A. The effect of ferric ions on the behavior of a nickelous hydroxide electrode. J. Appl. Electrochem. 1984, 14, 145-149.

36

Hall, D. E. Electrodes for alkaline water electrolysis. J. Electrochem. Soc. 1981, 128, 740-746.

37

Bowen, C. T.; Davis, H. J.; Henshaw, B. F.; Lachance, R.; Leroy, R. L.; Renaud, R. Developments in advanced alkaline water electrolysis. Int. J. Hydrogen Energ. 1984, 9, 59-66.

38

Janjua, M. B. I.; Leroy, R. L. Electrocatalyst performance in industrial water electrolysers. Int. J. Hydrogen Energ. 1985, 10, 11-19.

39

Birss, V. I.; Damjanovic, A.; Hudson, P. G. Oxygen evolution at platinum electrodes in alkaline solutions. 2. Mechanism of the reaction. J. Electrochem. Soc. 1986, 133, 1621-1625.

40

Conway, B. E.; Liu, T. C. Characterization of electrocatalysis in the oxygen evolution reaction at platinum by evolution of behavior of surface intermediate states at the oxide film. Langmuir 1990, 6, 268-276.

41

Corrigan, D. A.; Bendert, R. M. Effect of coprecipitated metal-ions on the electrochemistry of nickel-hydroxide thin-films-cyclic voltammetry in 1M KOH. J. Electrochem. Soc. 1988, 135, C156.

42

Kleinke, M. U.; Knobel, M.; Bonugli, L. O.; Teschke, O. Amorphous alloys as anodic and cathodic materials for alkaline water electrolysis. Int. J. Hydrogen Energ. 1997, 22, 759-762.

43

Plata-Torres, M.; Torres-Huerta, A. M.; Dominguez-Crespo, M. A.; Arce-Estrada, E. M.; Ramirez-Rodriguez, C. Electrochemical performance of crystalline Ni-Co-Mo-Fe electrodes obtained by mechanical alloying on the oxygen evolution reaction. Int. J. Hydrogen Energ. 2007, 32, 4142-4152.

44

Potvin, E.; Brossard, L. Electrocatalytic activity of Ni-Fe anodes for alkaline water electrolysis. Mater. Chem. Phys. 1992, 31, 311-318.

45

Singh, R. N.; Pandey, J. P.; Anitha, K. L. Preparation of electrodeposited thin-films of nickel iron-alloys on mild-steel for alkaline water electrolysis. 1. Studies on oxygen evolutiont. Int. J. Hydrogen Energ. 1993, 18, 467-473.

46

Grande, W. C.; Talbot, J. B. Electrodeposition of thin-films of nickel-iron. 1. Experimental. J. Electrochem. Soc. 1993, 140, 669-674.

47

Solmaz, R.; Kardas, G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. Electrochim. Acta 2009, 54, 3726-3734.

48

Hu, C. C.; Wu, Y. R. Bipolar performance of the electroplated iron-nickel deposits for water electrolysis. Mater. Chem. Phys. 2003, 82, 588-596.

49

Ullal, Y.; Hegde, A. C. Electrodeposition and electrocatalytic study of nanocrystalline Ni-Fe alloy. Int. J. Hydrogen Energ. 2014, 39, 10485-10492.

50

Li, X.; Walsh, F. C.; Pletcher, D. Nickel based electrocatalysts for oxygen evolution in high current density, alkaline water electrolysers. Phys. Chem. Chem. Phys. 2011, 13, 1162-1167.

51

Perez-Alonso, F. J.; Adan, C.; Rojas, S.; Pena, M. A.; Fierro, J. L. G. Ni/Fe electrodes prepared by electrodeposition method over different substrates for oxygen evolution reaction in alkaline medium. Int. J. Hydrogen Energ. 2014, 39, 5204-5212.

52

Kleiman-Shwarsctein, A.; Hu, Y. -S.; Stucky, G. D.; McFarland, E. W. NiFe-oxide electrocatalysts for the oxygen evolution reaction on Ti doped hematite photoelectrodes. Electrochem. Commun. 2009, 11, 1150-1153.

53

Louie, M. W.; Bell, A. T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 2013, 135, 12329-12337.

54

Merrill, M. D.; Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 2008, 112, 3655-3666.

55

Kim, K. H.; Zheng, J. Y.; Shin, W.; Kang, Y. S. Preparation of dendritic NiFe films by electrodeposition for oxygen evolution. RSC Adv. 2012, 2, 4759-4767.

56

Singh, R. N.; Singh, J. P.; Lal, B.; Thomas, M. J. K.; Bera, S. New NiFe2-xCrxO4 spinel films for O2 evolution in alkaline solutions. Electrochim Acta 2006, 51, 5515-5523.

57

Anindita, A.; Singh, R. N. Effect of V substitution at B-site on the physicochemical and electrocatalytic properties of spinel-type NiFe2O4 towards O2 evolution in alkaline solutions. Int. J. Hydrogen Energ. 2010, 35, 3243-3248.

58

Kumar, M.; Awasthi, R.; Sinha, A. S. K.; Singh, R. N. New ternary Fe, Co, and Mo mixed oxide electrocatalysts for oxygen evolution. Int. J. Hydrogen Energ. 2011, 36, 8831-8838.

59

Chanda, D.; Hnat, J.; Paidar, M.; Bouzek, K. Evolution of physicochemical and electrocatalytic properties of NiCo2O4 (AB(2)O(4)) spinel oxide with the effect of Fe substitution at the A site leading to efficient anodic O2 evolution in an alkaline environment. Int. J. Hydrogen Energ. 2014, 39, 5713-5722.

60

Cheng, Y.; Liu, C.; Cheng, H. -M.; Jiang, S. P. One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting. ACS Appl. Mater. Inter. 2014, 6, 10089-10098.

61

Singh, N. K.; Singh, R. N. Electrocatalytic properties of spinel type NixFe3-xO4 synthesized at low temperature for oxygen evolution in KOH solutions. Indian J. Chem. Sect A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 1999, 38, 491-495.

62

Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 2012, 134, 17253-17261.

63

Lu, Z. Y.; Wang, H. T.; Kong, D. S.; Yan, K.; Hsu, P. C.; Zheng, G. Y.; Yao, H. B.; Liang, Z.; Sun, X. M.; Cui, Y. Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction. Nat. Commun. 2014, 5, 4345.

64

Miller, E. L.; Rocheleau, R. E. Electrochemical behavior of reactively sputtered iron-doped nickel oxide. J. Electrochem. Soc. 1997, 144, 3072-3077.

65

Kodama, R. H.; Berkowitz, A. E.; McNiff, E. J.; Foner, S. Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 1996, 77, 394-397.

66

Kodama, R. H. Magnetic nanoparticles. J. Magn. Magn. Mater. 1999, 200, 359-372.

67

Smith, R. D. L.; Prevot. M. S.; Fagan, R. D.; Zhang, Z. P.; Sedach, P. A.; Sui, M. K. J.; Trudel, S.; Berlinguette, C. P. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 2013, 340, 60-63.

68
Evans, D. G.; Slade, R. C. T. Structural aspects of layered double hydroxides. In Layered Double Hydroxides, Vol. 119. X. Duan & D. G. Evans, eds. Springer: Berlin, Heidelberg, New York, 2006.
69

Wang, Q.; O'Hare, D. Recent advances in the synthesis and application of layer double hydroxide (LDH) Nanosheets. Chem. Rev. 2012, 112, 4124-4155.

70

Fan, G. L.; Li, F.; Evans, D. G.; Duan, X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chem. Soc. Rev. 2014, 43, 7040-7066.

71

Refait, P.; Abdelmoula, M.; Simon, L.; Genin, J. M. R. Mechanisms of formation and transformation of Ni-Fe layered double hydroxides in SO2- and SO42- containing aqueous solutions. J. Phys. Chem. Solids 2005, 66, 911-917.

72

Shi, Q. X.; Lu, R. W.; Lu, L. H.; Fu, X. M.; Zhao, D. F. Efficient reduction of nitroarenes over nickel-iron mixed oxide catalyst prepared from a nickel-iron hydrotalcite precursor. Adv. Synth. Catal. 2007, 349, 1877-1881.

73

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Rieger, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452-8455.

74

Long, X.; Li, J. K.; Xiao, S.; Yan, K. Y.; Wang, Z. L.; Chen, H. N.; Yang, S. H. A strongly coupled graphene and FeNi double hydroxide hybrid as an excellent electrocatalyst for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2014, 53, 7584-7588.

75

Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Inter. 2014, 6, 7918-7925.

76

Lu, Z. Y.; Xu, W. W.; Zhu, W.; Yang, Q.; Lei, X. D.; Liu, J. F.; Li, Y. P.; Sun, X. M.; Duan, X. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 2014, 50, 6479-6482.

77

Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation. J. Am. Chem. Soc. 2014, 136, 6744-6753.

78

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. commun. 2014, 5, 4477.

79

Gerken, J. B.; Chen, J. Y. C.; Masse, R. C.; Powell, A. B.; Stahl, S. S. Development of an O2-sensitive fluorescence-quenching assay for the combinatorial discovery of electrocatalysts for water oxidation. Angew. Chem. Inter. Ed. 2012, 51, 6676-6680.

80

Gerken, J. B.; Shaner, S. E.; Masse, R. C.; Porubsky, N. J.; Stahl, S. S. A survey of diverse earth abundant oxygen evolution electrocatalysts showing enhanced activity from Ni-Fe oxides containing a third metal. Energ. Environ Sci. 2014, 7, 2376-2382.

81

Haber, J. A.; Xiang, C. C.; Guevarra, D.; Jung, S. H.; Jin, J.; Gregoire, J. M. High-throughput mapping of the electrochemical properties of (Ni-Fe-Co-Ce)Ox oxygen-evolution catalysts. Chemelectrochem 2014, 1, 524-528.

82

Chen, J. Y. C.; Miller, J. T.; Gerken, J. B.; Stahl, S. S. Inverse spinel NiFeAlO4 as a highly active oxygen evolution electrocatalyst: Promotion of activity by a redox-inert metal ion. Energ. Environ. Sci. 2014, 7, 1382-1386.

83

Bode, H.; Dehmelt, K.; Witte, J. Nickel hydroxide electrodes. 2. oxidation products of nickel(Ⅱ) hydroxides. Z. Anorg. Allg. Chem 1969, 366, 1.

84

Barnard, R.; Randell, C. F.; Tye, F. L. Studies concerning charged nickel-hydroxide electrodes. 1. Measurements of reversible potentials. J. Appl. Electrochem. 1980, 10, 109-125.

85

Lu, P. W. T.; Srinivasan, S. Electrochemical-ellipsometric studies of oxide film for medon nickel during oxygen evolution. J. Electrochem. Soc. 1978, 125, 1416-1422.

86

Lyons, M. E. G.; Brandon, M. P. The oxygen evolution reaction on passive oxide covered transition metal electrodes in aqueous alkaline solution. Part 1-Nickel. Inter. J. Electrochem. Sci. 2008, 3, 1386-1424.

87

Bediako, D. K.; Lassalle-Kaiser, B.; Surendranath, Y.; Yano, J.; Yachandra, V. K.; Nocera, D. G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 2012, 134, 6801-6809.

88

Landon, J.; Demeter, E.; Inoglu, N.; Keturakis, C.; Wachs, I. E.; Vasic, R.; Frenkel, A. I.; Kitchin, J. R. Spectroscopic characterization of mixed Fe-Ni oxide electrocatalysts for the oxygen evolution reaction in alkaline electrolytes. ACS Catal. 2012, 2, 1793-1801.

89

Li, Y. -F.; Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 2014, 4, 1148-1153.

90

Li, Y. G.; Dai, H. J. Recent advances in zinc-air batteries. Chem. Soc. Rev. 2014, 43, 5257.

91

Liang, Y. Y.; Wang, H. L.; Diao, P.; Chang, W.; Hong, G. S.; Li, Y. G.; Gong, M.; Xie, L. M.; Zhou, J. G.; Wang, J. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849-15857.

92

Li, Y. G.; Gong, M.; Liang, Y. Y.; Feng, J.; Kim, J. E.; Wang, H. L.; Hong, G. S.; Zhang, B.; Dai, H. J. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts. Nat. commun 2013, 4.

Publication history
Copyright

Publication history

Received: 13 September 2014
Accepted: 18 September 2014
Published: 03 November 2014
Issue date: January 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014
Return