Journal Home > Volume 8 , Issue 2

Cobalt oxides, such as Co3O4 and CoO, have received increasing attention as potential anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials for LIBs. In this review, we summarize recent developments in the rational design and fabrication of various cobalt oxide-based nanomaterials and their lithium storage performance, including 1D nanowires/belts, 2D nanosheets, 3D hollow/hierarchical structures, hybrid nanostructures with carbon (amorphous carbon, carbon nanotubes and graphene) and mixed metal oxides. By focusing on the effects of their structure on their electrochemical performance, effective strategies for the fabrication of cobalt oxide/carbon hybrid nanostructures are highlighted. This review shows that by rational design, such cobalt-oxide-based nanomaterials are very promising as next generation LIB anodes.


menu
Abstract
Full text
Outline
About this article

Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices

Show Author's information Hua-Jun QiuLi LiuYan-Ping MuHui-Juan ZhangYu Wang( )
School of Chemistry and Chemical EngineeringChongqing UniversityChongqing400044China

Abstract

Cobalt oxides, such as Co3O4 and CoO, have received increasing attention as potential anode materials for rechargeable lithium-ion batteries (LIBs) owing to their high theoretical capacity. Nanostructure engineering has been demonstrated as an effective approach to improve the electrochemical performance of electrode materials for LIBs. In this review, we summarize recent developments in the rational design and fabrication of various cobalt oxide-based nanomaterials and their lithium storage performance, including 1D nanowires/belts, 2D nanosheets, 3D hollow/hierarchical structures, hybrid nanostructures with carbon (amorphous carbon, carbon nanotubes and graphene) and mixed metal oxides. By focusing on the effects of their structure on their electrochemical performance, effective strategies for the fabrication of cobalt oxide/carbon hybrid nanostructures are highlighted. This review shows that by rational design, such cobalt-oxide-based nanomaterials are very promising as next generation LIB anodes.

Keywords: graphene, lithium ion battery, hybrid, anodes, peapod structure

References(101)

1

Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Electrodes with high power and high capacity for rechargeable lithium batteries. Science 2006, 311, 977–980.

2

Tarascon, J. M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359–367.

3

Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009, 458, 190–193.

4

Whittingham, M. S. Lithium batteries and cathode materials. Chem. Rev. 2004, 104, 4271–4301.

5

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Edit. 2008, 47, 2930–2946.

6

Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.

7

Kim, M. G.; Cho, J. Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 2009, 19, 1497–1514.

8

Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew. Chem. Int. Edit. 2007, 46, 750–753.

9

Taberna, L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 2006, 5, 567–573.

10

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

11

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Mater. 2010, 22, E28–E62.

12

Zhang, L.; Wu, H. B.; Lou, X. W. Iron-oxide-based advanced anode materials for lithium-ion batteries. Adv. Energy Mater. 2014, 4, 1300958.

13

Reddy, M. V.; Rao, G. V. S.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chem. Rev. 2013, 113, 5364–5457.

14

Zhu, J.; Sharma, Y. K.; Zeng, Z.; Zhang, X.; Srinivasan, M.; Mhaisalkar, S.; Zhang, H.; Hng, H. H.; Yan, Q. Cobalt oxide nanowall arrays on reduced graphene oxide sheets with controlled phase, grain size, and porosity for Li-ion battery electrodes. J. Phys. Chem. C 2011, 115, 8400–8406.

15

Reddy, M. V.; Prithvi, G.; Loh, K. P.; Chowdari, B. V. R. Li storage and impedance spectroscopy studies on Co3O4, CoO, and CoN for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 680–690.

16

Armstrong, M. J.; O'Dwyer, C.; Macklin, W. J.; Holmes, J. D. Evaluating the performance of nanostructured materials as lithium-ion battery electrodes. Nano Res. 2014, 7, 1–62.

17

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

18

Ji, L.; Lin, Z.; Alcoutlabi, M.; Zhang, X. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682-2699.

19

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

20

Chen, J. S.; Lou, X. W. SnO2 and TiO2 nanosheets for lithium-ion batteries. Mater. Today 2012, 15, 246–254.

21

Wang, Y.; Zhang, H. J.; Wei, J.; Wong, C. C.; Lin, J. Y.; Borgna, A. Crystal-match guided formation of single-crystal tricobalt tetraoxygen nanomesh as superior anode for electrochemical energy storage. Energy Environ. Sci. 2011, 4, 1845–1854.

22

Ge, D.; Geng, H.; Wang, J.; Zheng, J.; Pan, Y.; Cao, X.; Gu, H. Porous nano-structured Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries. Nanoscale 2014, 6, 9689-9694.

23

Shaju, K. M.; Jiao, F.; Debart, A.; Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2007, 9, 1837-1842.

24

Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H. Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem. Eur. J. 2010, 16, 5215–5221.

25

Hao, W.; Chen, S.; Cai, Y.; Zhang, L.; Li, Z.; Zhang, S. Three-dimensional hierarchical pompon-like Co3O4 porous spheres for high-performance lithium-ion batteries. J. Mater. Chem. A 2014, 2, 13801–13804.

26

Tian, L.; Zou, H. L.; Fu, J. X.; Yang, X. F.; Wang, Y.; Guo, H. L.; Fu, X. H.; Liang, C. L.; Wu, M. M.; Shen, P. K.; Gao, Q. M. Topotactic conversion route to mesoporous quasi- single-crystalline Co3O4 nanobelts with optimizable electrochemical performance. Adv. Funct. Mater. 2010, 20, 617–623.

27

Lou, X. W.; Deng, D.; Lee, J. Y.; Archer, L. A. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties. J. Mater. Chem. 2008, 18, 4397–4401.

28

Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: rational synthesis of Co(CO3)0.5(OH)·0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425–1432.

29

Jiang, J.; Liu, J. P.; Ding, R. M.; Ji, X. X.; Hu, Y. Y.; Li, X.; Hu, A. Z.; Wu, F.; Zhu, Z. H.; Huang, X. T. Direct Synthesis of CoO porous nanowire arrays on Ti substrate and their application as lithium-ion battery electrodes. J. Phys. Chem. C 2010, 114, 929–932.

30

Zhan, F. M.; Geng, B. Y.; Guo, Y. J. Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem. Eur. J. 2009, 15, 6169–6174.

31

Chou, S. L.; Wang, J. Z.; Liu, H. K.; Dou, S. X. Electrochemical deposition of porous Co3O4 nanostructured thin film for lithium-ion battery. J. Power Sources 2008, 182, 359–364.

32

Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680–1686.

33

Du, N.; Zhang, H.; Chen, B.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505–4509.

34

Shim, H. W.; Jin, Y. H.; Seo, S. D.; Lee, S. H.; Kim, D. W. Highly reversible lithium storage in bacillus subtilis-directed porous Co3O4 nanostructures. ACS Nano 2011, 5, 443–449.

35

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formatnion of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258–262.

36

Wang, X.; Yu, L. J.; Wu, X. L.; Yuan, F. L.; Guo, Y. G.; Ma, Y.; Yao, J. N. Synthesis of single-crystalline Co3O4 octahedral cages with tunable surface aperture and their lithium storage properties. J. Phys. Chem. C 2009, 113, 15553–15558.

37

Guan, H.; Wang, X.; Li, H. Q.; Zhi, C. Y.; Zhai, T. Y.; Bando, Y.; Golberg, D. CoO octahedral nanocages for high- performance lithium ion batteries. Chem. Commun. 2012, 48, 4878–4880.

38

Shao, J.; Wan, Z.; Liu, H.; Zheng, H.; Gao, T.; Shen, M.; Qu, Q.; Zheng, H. Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A 2014, 2, 12194–12200.

39

Liang, Y.; Li, Y.; Wang, H.; Dai, H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 2013, 135, 2013–2036.

40

Xia, X. H.; Chao, D. L.; Fan, Z. X.; Guan, C.; Cao, X. H.; Zhang, H.; Fan, H. J. A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: Structural design, fabrication, and full supercapacitor demonstrations. Nano Lett. 2014, 14, 1651–1658.

41

Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan- Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.

42

Ryu, W. H.; Yoon, T. H.; Song, S. H.; Jeon, S.; Park, Y. J.; Kim, I. D. Bifunctional composite catalysts using Co3O4 nanofibers immobilized on nonoxidized graphene nanoflakes for high-capacity and long-cycle Li–O2 batteries. Nano Lett. 2013, 13, 4190–4197.

43

Sun, B.; Liu, H.; Munroe, P.; Ahn, H.; Wang, G. X. Nanocomposites of CoO and a mesoporous carbon (CMK-3) as a high performance cathode catalyst for lithium-oxygen batteries. Nano Res. 2012, 5, 460–469.

44

Wang, H.; Dai, H. Strongly coupled inorganic-nano-carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

45

Wang, H.; Liang, Y.; Gong, M.; Li, Y.; Chang, W.; Mefford, T.; Zhou, J.; Wang, J.; Regier, T.; Wei, F.; Dai, H. An ultrafast nickel–iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 2012, 3, 917.

46

Wang, H. L.; Dai, H. J. Strongly coupled inorganic-nano- carbon hybrid materials for energy storage. Chem. Soc. Rev. 2013, 42, 3088–3113.

47

Li, H.; Zhou, H. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

48

Zhang, P.; Guo, Z. P.; Huang, Y. D.; Jia, D. Z.; Liu, H. K. Synthesis of Co3O4/carbon composite nanowires and their electrochemical properties. J. Power Sources 2011, 196, 6987–6991.

49

Chen, J.; Xia, X. H.; Tu, J. P.; Xiong, Q. Q.; Yu, Y. X.; Wang, X. L.; Gu, C. D. Co3O4C core-shell nanowire array as an advanced anode material for lithium ion batteries. J. Mater. Chem. 2012, 22, 15056–15061.

50

Wu, F.; Ma, X.; Feng, J.; Qian, Y.; Xiong, S. 3D Co3O4 and CoO@C wall arrays: Morphology control, formation mechanism, and lithium-storage properties. J. Mater. Chem. A 2014, 2, 11597–11605.

51

Wang, Y.; Zhang, H. J.; Lu, L.; Stubbs, L. P.; Wong, C. C.; Lin, J. Y. Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites. ACS Nano 2010, 4, 4753–4761.

52

Zhang, H. J.; Bai, Y. J.; Zhang, Y.; Li, X.; Feng, Y. Y.; Liu, Q.; Wu, K.; Wang, Y. Designed synthesis of transition metal/oxide hierarchical peapods array with the superior lithium storage performance. Sci. Rep. 2013, 3, 2717.

53

Zhang, H.; Feng, Y.; Zhang, Y.; Fang, L.; Li, W.; Liu, Q.; Wu, K.; Wang, Y. Peapod-like composite with nickel phosphide nanoparticles encapsulated in carbon fibers as enhanced anode for Li-ion batteries. ChemSusChem 2014, 7, 2000–2006.

54

Jiang, H.; Hu, Y.; Guo, S.; Yan, C.; Lee, P. S.; Li, C. Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 2014, 8, 6038–6046.

55

Xiong, S. L.; Chen, J. S.; Lou, X. W.; Zeng, H. C. Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv. Funct. Mater. 2012, 22, 861–871.

56

Xie, K.; Wu, P.; Zhou, Y.; Ye, Y.; Wang, H.; Tang, Y.; Zhou, Y.; Lu, T. Nitrogen-doped carbon-wrapped porous single-crystalline CoO nanocubes for high-performance lithium storage. ACS Appl. Mater. Interfaces 2014, 6, 10602–10607.

57

Jian, Z.; Liu, P.; Li, F.; Chen, M.; Zhou, H. Monodispersed hierarchical Co3O4 spheres intertwined with carbon nanotubes for use as anode materials in sodium-ion batteries. J. Mater. Chem. A 2014, 2, 13805–13809.

58

He, X. F.; Wu, Y.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J. Mater. Chem. A 2013, 1, 11121–11125.

59

Zhou, G. M.; Li, L.; Zhang, Q.; Li, N.; Li, F. Octahedral Co3O4 particles threaded by carbon nanotube arrays as integrated structure anodes for lithium ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 5582–5587.

60

Abbas, S. M.; Hussain, S. T.; Ali, S.; Ahmad, N.; Ali, N.; Munawar, K. S. Synthesis of carbon nanotubes anchored with mesoporous Co3O4 nanoparticles as anode material for lithium-ion batteries. Electrochim. Acta 2013, 105, 481–488.

61

Liu, M.; Zhang, R.; Chen, W. Graphene-supported nanoelectrocatalysts for fuel cells: Synthesis, properties, and applications. Chem. Rev. 2014, 114, 5117–5160.

62

Yang, X. L.; Fan, K. C.; Zhu, Y. H.; Shen, J. H.; Jiang, X.; Zhao, P.; Li, C. Z. Tailored graphene-encapsulated mesoporous Co3O4 composite microspheres for high- performance lithium ion batteries. J. Mater. Chem. 2012, 22, 17278–17283.

63

Chabot, V.; Higgins, D.; Yu, A. P.; Xiao, X. C.; Chen, Z. W.; Zhang, J. J. A review of graphene and graphene oxide sponge: Material synthesis and applications to energy and the environment. Energy Environ. Sci. 2014, 7, 1564–1596.

64

Zhou, G. M.; Li, F.; Cheng, H. M. Progress in flexible lithium batteries and future prospects. Energy Environ. Sci. 2014, 7, 1307–1338.

65

Yang, S. B.; Cui, G. L.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 236–239.

66

Xie, J. L.; Guo, C. X.; Li, C. M. Construction of one- dimensional nanostructures on graphene for efficient energy conversion and storage. Energy Environ. Sci. 2014, 7, 2559–2579.

67

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium Ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

68

Yang, S. B.; Feng, X. L.; Ivanovici, S.; Mullen, K. Fabrication of graphene-encapsulated oxide nanoparticles: Towards high-performance anode materials for lithium storage. Angew. Chem. Int. Edit. 2010, 49, 8408–8411.

69

Kim, H.; Seo, D. H.; Kim, S. W.; Kim, J.; Kang, K. Highly reversible Co3O4/graphene hybrid anode for lithium rechargeable batteries. Carbon 2011, 49, 326–332.

70

Chen, S. Q.; Wang, Y. Microwave-assisted synthesis of a Co3O4-graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. J. Mater. Chem. 2010, 20, 9735–9739.

71

Li, B.; Cao, H.; Shao, J.; Li, G.; Qu, M.; Yin, G. Co3O4@graphene composites as anode materials for high- performance lithium ion batteries. Inorg. Chem. 2011, 50, 1628–1632.

72

Wang, L.; Zheng, Y.; Wang, X.; Chen, S.; Xu, F.; Zuo, L.; Wu, J.; Sun, L.; Li, Z.; Hou, H.; Song, Y. Nitrogen-doped porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 7117–7125.

73

Sun, Y.; Hu, X.; Luo, W.; Huang, Y. Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium- ion batteries. J. Phys. Chem. C 2012, 116, 20794–20799.

74

Peng, C. X.; Chen, B. D.; Qin, Y.; Yang, S. H.; Li, C. Z.; Zuo, Y. H.; Liu, S. Y.; Yang, J. H. Facile ultrasonic synthesis of CoO quantum dot/graphene nanosheet composites with high lithium storage capacity. ACS Nano 2012, 6, 1074–1081.

75

Sun, Y. M.; Hu, X. L.; Luo, W.; Huang, Y. H. Ultrathin CoO/graphene hybrid nanosheets: A highly stable anode material for lithium-ion batteries. J. Phys. Chem. C 2012, 116, 20794–20799.

76

Huang, X. L.; Wang, R. Z.; Xu, D.; Wang, Z. L.; Wang, H. G.; Xu, J. J.; Wu, Z.; Liu, Q. C.; Zhang, Y.; Zhang, X. B. Homogeneous CoO on graphene for binder-free and ultralong-life lithium ion batteries. Adv. Funct. Mater. 2013, 23, 4345–4353.

77

Qi, Y.; Zhang, H.; Du, N.; Yang, D. R. Highly loaded CoO/graphene nanocomposites as lithium-ion anodes with superior reversible capacity. J. Mater. Chem. A 2013, 1, 2337–2342.

78

Sun, H.; Sun, X.; Hu, T.; Yu, M.; Lu, F.; Lian, J. Graphene- wrapped mesoporous cobalt oxide hollow spheres anode for high-rate and long-life lithium ion batteries. J. Phys. Chem. C 2014, 118, 2263–2272.

79

Wang, Y.; Bai, Y. J.; Li, X.; Feng, Y. Y.; Zhang, H. J. A General strategy towards encapsulation of nanoparticles in sandwiched graphene sheets and the synergic effect on energy storage. Chem. Eur. J. 2013, 19, 3340–3347.

80

Zhang, H. J.; Bai, Y. J.; Feng, Y. Y.; Li, X.; Wang, Y. Encapsulating magnetic nanoparticles in sandwich-like coupled graphene sheets and beyond. Nanoscale 2013, 5, 2243–2248.

81

Zhou, L.; Zhao, D. Y.; Lou, X. W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Adv. Mater. 2012, 24, 745–748.

82

Zheng, F.; Zhu, D.; Chen, Q. Facile fabrication of porous NixCo3–xO4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 9256–9264.

83

Liu, B.; Wang, X. F.; Liu, B. Y.; Wang, Q. F.; Tan, D. S.; Song, W. F.; Hou, X. J.; Chen, D.; Shen, G. Z. Advanced rechargeable lithium-ion batteries based on bendable ZnCo2O4-urchins-on-carbon-fibers electrodes. Nano Res. 2013, 6, 525–534.

84

Liu, B.; Zhang, J.; Wang, X.; Chen, G.; Chen, D.; Zhou, C.; Shen, G. Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high- performance flexible lithium-ion batteries. Nano Lett. 2012, 12, 3005–3011.

85

Yuan, C. Z.; Wu, H. B.; Xie, Y.; Lou, X. W. Mixed transition- metal oxides: Design, synthesis, and energy-related applications. Angew. Chem. Int. Edit. 2014, 53, 1488–1504.

86

Jadhav, H. S.; Kalubarme, R. S.; Park, C. -N.; Kim, J.; Park, C. -J. Facile and cost effective synthesis of mesoporous spinel NiCo2O4 as an anode for high lithium storage capacity. Nanoscale 2014, 6, 10071–10076.

87

Li, J. F.; Xiong, S. L.; Li, X. W.; Qian, Y. T. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045–2054.

88

Li, J. F.; Wang, J. Z.; Liang, X.; Zhang, Z. J.; Liu, H. K.; Qian, Y. T.; Xiong, S. L. Hollow MnCo2O4 submicrospheres with multilevel interiors: From mesoporous spheres to yolk-in-double-shell structures. ACS Appl. Mater. Interfaces 2014, 6, 24–30.

89

Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C. M.; Cui, Y. A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 2012, 12, 3315–3321.

90

Sun, S. J.; Wen, Z. Y.; Jin, J.; Cui, Y. M.; Lu, Y. Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. Micropor. Mesopor. Mater. 2013, 169, 242–247.

91

Liu, J.; Liu, C.; Wan, Y.; Liu, W.; Ma, Z.; Ji, S.; Wang, J.; Zhou, Y.; Hodgson, P.; Li, Y. Facile synthesis of NiCo2O4 nanorod arrays on Cu conductive substrates as superior anode materials for high-rate Li-ion batteries. CrystEngComm 2013, 15, 1578–1585.

92

Wang, Z. Y.; Wang, Z. C.; Liu, W. T.; Xiao, W.; Lou, X. W. Amorphous CoSnO3@C nanoboxes with superior lithium storage capability. Energy Environ. Sci. 2013, 6, 87–91.

93

Wang, Z. Y.; Wang, Z. C.; Wu, H. B.; Lou, X. W. Mesoporous single-crystal CoSn(OH)6 hollow structures with multilevel interiors. Sci. Rep. 2013, 3, 1391.

94

Zhang, G.; Lou, X. W. General synthesis of multi-shelled mixed metal oxide hollow spheres with superior lithium storage properties. Angew. Chem. Int. Edit. 2014, 53, 9041-9044.

95

Li, Z. Q.; Li, B.; Yin, L. W.; Qi, Y. X. Prussion blue- supported annealing chemical reaction route synthesized double-shelled Fe2O3/Co3O4 hollow microcubes as anode materials for lithium-ion battery. ACS Appl. Mater. Interfaces 2014, 6, 8098–8107.

96

Kim, W. S.; Hwa, Y.; Kim, H. C.; Choi, J. H.; Sohn, H. J.; Hong, S. H. SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res. 2014, 7, 1128–1136.

97

Wu, H.; Xu, M.; Wang, Y. C.; Zheng, G. F. Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes. Nano Res. 2013, 6, 167–173.

98

Kong, D.; Luo, J.; Wang, Y.; Ren, W.; Yu, T.; Luo, Y.; Yang, Y.; Cheng, C. Three-dimensional Co3O4@MnO2 hierarchical nanoneedle arrays: Morphology control and electrochemical energy storage. Adv. Funct. Mater. 2014, 24, 3815–3826.

99

Qi, Y.; Du, N.; Zhang, H.; Fan, X.; Yang, Y.; Yang, D. R. CoO/NiSix core-shell nanowire arrays as lithium-ion anodes with high rate capabilities. Nanoscale 2012, 4, 991–996.

100

Chen, H.; Zhang, Q.; Wang, J.; Xu, D.; Li, X.; Yang, Y.; Zhang, K. Improved lithium ion battery performance by mesoporous Co3O4 nanosheets grown on self-standing NiSix nanowires on nickel foam. J. Mater. Chem. A 2014, 2, 8483–8490.

101

Wang, J. X.; Zhang, Q. B.; Li, X. H.; Xu, D. G.; Wang, Z. X.; Guo, H. J.; Zhang, K. L. Three-dimensional hierarchical Co3O4/CuO nanowire heterostructure arrays on nickel foam for high-performance lithium ion batteries. Nano Energy 2014, 6, 19–26.

Publication history
Copyright
Acknowledgements

Publication history

Received: 23 August 2014
Revised: 15 September 2014
Accepted: 16 September 2014
Published: 28 October 2014
Issue date: February 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was financially supported by the Thousand Young Talents Program of the Chinese Central Government (Grant No. 0220002102003), the National Natural Science Foundation of China (NSFC, Grant Nos. 21373280, 21403019), the Beijing National Laboratory for Molecular Sciences (BNLMS) and the Hundred Talents Program at Chongqing University (Grant No. 0903005203205).

Return