Journal Home > Volume 8 , Issue 1

Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode materials is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na+ ions per formula unit. However, increasing the Na content in PBAs cathode materials remains a major challenge. Here we show that sodium iron hexacyanoferrate with high Na content can be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mAh·g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism has been systematically studied by in situ Raman spectroscopy, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. The Na-rich sodium iron hexacyanoferrate can function as a plenteous Na reservoir and has great potential as a cathode material for practical Na-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Sodium iron hexacyanoferrate with high Na content as a Na-rich cathode material for Na-ion batteries

Show Author's information Ya You1Xiqian Yu2Yaxia Yin1Kyung-Wan Nam3( )Yu-Guo Guo1( )
CAS Key Laboratory of Molecular Nanostructure and Nanotechnologyand Beijing National Laboratory for Molecular SciencesInstitute of ChemistryChinese Academy of Sciences (CAS)Beijing100190China
Chemistry DepartmentBrookhaven National LaboratoryUptonNew York11973USA
Department of Energy and Materials EngineeringDongguk University, Seoul, 100-715Republic of Korea

Abstract

Owing to the worldwide abundance and low-cost of Na, room-temperature Na-ion batteries are emerging as attractive energy storage systems for large-scale grids. Increasing the Na content in cathode materials is one of the effective ways to achieve high energy density. Prussian blue and its analogues (PBAs) are promising Na-rich cathode materials since they can theoretically store two Na+ ions per formula unit. However, increasing the Na content in PBAs cathode materials remains a major challenge. Here we show that sodium iron hexacyanoferrate with high Na content can be obtained by simply controlling the reducing agent and reaction atmosphere during synthesis. The Na content can reach as high as 1.63 per formula, which is the highest value for sodium iron hexacyanoferrate. This Na-rich sodium iron hexacyanoferrate demonstrates a high specific capacity of 150 mAh·g-1 and remarkable cycling performance with 90% capacity retention after 200 cycles. Furthermore, the Na intercalation/de-intercalation mechanism has been systematically studied by in situ Raman spectroscopy, X-ray diffraction and X-ray absorption spectroscopy analysis for the first time. The Na-rich sodium iron hexacyanoferrate can function as a plenteous Na reservoir and has great potential as a cathode material for practical Na-ion batteries.

Keywords: sodium-ion batteries, sodium iron hexacyanoferrate, Na-rich cathode, Prussian blue analogues

References(60)

1

Han, P. X.; Yue, Y. H.; Zhang, L. X.; Xu, H. X.; Liu, Z. H.; Zhang, K. J.; Zhang, C. J.; Dong, S. M.; Ma, W.; Cui, G. L. Nitrogen-doping of chemically reduced mesocarbon microbead oxide for the improved performance of lithium ion batteries. Carbon 2012, 50, 1355-1362.

2

Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388-17391.

3

Yao, Y.; McDowell, M. T.; Ryu, I.; Wu, H.; Liu, N. A.; Hu, L. B.; Nix, W. D.; Cui, Y. Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life. Nano Lett. 2011, 11, 2949-2954.

4

Nan, C. Y.; Lu, J.; Li, L. H.; Li, L. L.; Peng, Q.; Li, Y. D. Size and shape control of LiFePO4 nanocrystals for better lithium ion battery cathode materials. Nano Res. 2013, 6, 469-477.

5

Zhong, X.; Zhang, H.; Liu, Y.; Bai, J. W.; Liao, L.; Huang, Y.; Duan, X. F. High-capacity silicon-air battery in alkaline solution. ChemSusChem 2012, 5, 177-180.

6

Cao, F. F.; Guo, Y. G.; Wan, L. J. Better lithium-ion batteries with nanocable-like electrode materials. Energy Environ. Sci. 2011, 4, 1634-1642.

7

Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang, X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat. Commun. 2013, 4, 2365.

8

Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 2012, 5, 5884-5901.

9

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338-2360.

10

Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elkaïm, E.; Delmas, C. P2-NaxVO2 system as electrodes for batteries and electron-correlated materials. Nat. Mater. 2013, 12, 74-80.

11

You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J. Mater. Chem. A 2013, 1, 14061-14065.

12

Yin, Y. X.; Xin, S.; Wan, L. J.; Li, C. J.; Guo, Y. G. SnO2 hollow spheres: Polymer bead-templated hydrothermal synthesis and their electrochemical properties for lithium storage. Sci. China Chem. 2012, 55, 1314-1318.

13

Ji, H. X.; Wu, X. L.; Fan, L. Z.; Krien, C.; Fiering, I.; Guo, Y. G.; Mei, Y. F.; Schmidt, O. G. Self-wound composite nanomembranes as electrode materials for lithium ion batteries. Adv. Mater. 2010, 22, 4591-4595.

14

Zhu, H. L.; Jia, Z.; Chen, Y. C.; Weadock, N.; Wan, J. Y.; Vaaland, O.; Han, X. G.; Li, T.; Hu, L. B. Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 2013, 13, 3093-3100.

15

Chen, S. Q.; Bao, P. T.; Huang, X. D.; Sun, B.; Wang, G. X. Hierarchical 3D mesoporous silicon@graphene nanoarchitectures for lithium ion batteries with superior performance. Nano Res. 2014, 7, 85-94.

16

Wang, L. J.; Zhang, K.; Hu, Z.; Duan, W. C.; Cheng, F. Y.; Chen, J. Porous CuO nanowires as the anode of rechargeable Na-ion batteries. Nano Res. 2014, 7, 199-208.

17

Su, D. W.; Ahn, H. J.; Wang, G. X. β-MnO2 nanorods with exposed tunnel structures as high-performance cathode materials for sodium-ion batteries. NPG Asia Mater. 2013, 5, e70.

18

Su, D. W.; Dou, S. X.; Wang, G. X. Hierarchical orthorhombic V2O5 hollow nanospheres as high performance cathode materials for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 11185-11194.

19

Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries. Nat. Mater. 2012, 11, 512-517.

20

Park, Y. U.; Seo, D. H.; Kwon, H. S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H. I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870-13878.

21

Liang, S. Q.; Chen, T.; Pan, A. Q.; Liu, D. W.; Zhu, Q. Y.; Cao, G. Z. Synthesis of Na1.25V3O8 nanobelts with excellent long-term stability for rechargeable lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 11913-11917.

22

Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165-4168.

23

Zhang, K.; Zhao, Q.; Tao, Z. L.; Chen, J. Composite of sulfur impregnated in porous hollow carbon spheres as the cathode of Li-S batteries with high performance. Nano Res. 2013, 6, 38-46.

24

Wang, H. L.; Liang, Y. Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. J. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729-736.

25

Su, D. W.; Wang, C. Y.; Ahn, H. J.; Wang, G. X. Single crystalline Na0.7MnO2 nanoplates as cathode materials for sodium-ion batteries with enhanced performance. Chem. - Eur. J. 2013, 19, 10884-10889.

26

Su, D. W.; Dou, S. X.; Wang, G. X. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances. Chem. Commun. 2014, 50, 4192-4195.

27

Nishijima, M.; Gocheva, I. D.; Okada, S.; Doi, T.; Yamaki, J.; Nishida, T. Cathode properties of metal trifluorides in Li and Na secondary batteries. J. Power Sources 2009, 190, 558-562.

28

Cao, Y. L.; Xiao, L. F.; Wang, W.; Choi, D.; Nie, Z. M.; Yu, J. G.; Saraf, L. V.; Yang, Z. G.; Liu, J. Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv. Mater. 2011, 23, 3155-3160.

29

Sun, Q.; Ren, Q. Q.; Fu, Z. W. NASICON-type Fe2(MoO4)3 thin film as cathode for rechargeable sodium ion battery. Electrochem. Commun. 2012, 23, 145-148.

30

Pasta, M.; Wessells, C. D.; Huggins, R. A.; Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nat. Commun. 2012, 3, 1149.

31

Wessells, C. D.; Huggins, R. A.; Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nat. Commun. 2011, 2, 550.

32

Zhou, M.; Qian, J. F.; Ai, X. P.; Yang, H. X. Redox-active Fe(CN)64--doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries. Adv. Mater. 2011, 23, 4913-4917.

33

Yue, Y. F.; Binder, A. J.; Guo, B. K.; Zhang, Z. Y.; Qiao, Z. A.; Tian, C. C.; Dai, S. Mesoporous Prussian blue analogues: Template-free synthesis and sodium-ion battery applications. Angew. Chem. Int. Ed. 2014, 53, 3134-3137.

34

Kong, B.; Tang, J.; Wu, Z. X.; Wei, J.; Wu, H.; Wang, Y. C.; Zheng, G. F.; Zhao, D. Y. Ultralight mesoporous magnetic frameworks by interfacial assembly of prussian blue nanocubes. Angew. Chem. Int. Ed. 2014, 53, 2888-2892.

35

Lu, Y. H.; Wang, L.; Cheng, J. G.; Goodenough, J. B. Prussian blue: A new framework of electrode materials for sodium batteries. Chem. Commun. 2012, 48, 6544-6546.

36

Lee, H.; Kim, Y. I.; Park, J. K.; Choi, J. W. Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. Chem. Commun. 2012, 48, 8416-8418.

37

Tomoyuki, M.; Masamitsu, T.; Yutaka, M. A sodium manganese ferrocyanide thin film for Na-ion batteries. Chem. Commun. 2013, 49, 2750-2752.

38

Kareis, C. M.; Lapidus, S. H.; Her, J. H.; Stephens, P. W.; Miller, J. S. Non-Prussian blue structures and magnetic ordering of Na2Mn[Mn(CN)6] and Na2Mn[Mn(CN)6]·2H2O. J. Am. Chem. Soc. 2011, 134, 2246-2254.

39

Takachi, M.; Matsuda, T.; Moritomo, Y. Cobalt hexacyanoferrate as cathode material for Na+ secondary battery. Appl. Phys. Express 2013, 6, 025802.

40

Asakura, D.; Li, C. H.; Mizuno, Y.; Okubo, M.; Zhou, H.; Talham, D. R. Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: Core@shell nanoparticles with enhanced cyclability. J. Am. Chem. Soc. 2013, 135, 2793-2799.

41

Wu, X. Y.; Sun, M. Y.; Shen, Y. F.; Qian, J. F.; Cao, Y. L.; Ai, X. P.; Yang, H. X. Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3 intercalation chemistry. ChemSusChem 2014, 7, 407-411.

42

Wu, X. Y.; Cao, Y. L.; Ai, X. P.; Qian, J. F.; Yang, H. X. A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 2013, 31, 145-148.

43

Wang, L.; Lu, Y. H.; Liu, J.; Xu, M. W.; Cheng, J. G.; Zhang, D. W.; Goodenough, J. B. A superior low-cost cathode for a Na-ion battery. Angew. Chem. Int. Ed. 2013, 52, 1964-1967.

44

Arora, P.; White, R. E.; Doyle, M. Capacity fade mechanisms and side reactions in lithium-ion batteries. J. Electrochem. Soc. 1998, 145, 3647-3667.

45

You, Y.; Wu, X. L.; Yin, Y. X.; Guo, Y. G. High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries. Energy Environ. Sci. 2014, 7, 1643-1647.

46

Bak, S. M.; Nam, K. W.; Chang, W.; Yu, X.; Hu, E.; Hwang, S.; Stach, E. A.; Kim, K. B.; Chung, K. Y.; Yang, X. Q. Correlating structural changes and gas evolution during the thermal decomposition of charged LixNi0.8Co0.15Al0.05O2 cathode materials. Chem. Mater. 2013, 25, 337-351.

47

Newville, M. Ifeffit: Interactive XAFS analysis and FEFF fitting. J. Synchrotron Radiat. 2001, 8, 322-324.

48

Matsuda, T.; Kim, J.; Moritomo, Y. Symmetry switch of cobalt ferrocyanide framework by alkaline cation exchange. J. Am. Chem. Soc. 2010, 132, 12206-12207.

49

Haight, S. M.; Schwartz, D. T.; Lilga, M. A. In situ oxidation state profiling of nickel hexacyanoferrate derivatized electrodes using line-imaging Raman spectroscopy and multivariate calibration. J. Electrochem. Soc. 1999, 146, 1866-1872.

50

Samain, L.; Gilbert, B.; Grandjean, F.; Long, G. J.; Strivay, D. Redox reactions in Prussian blue containing paint layers as a result of light exposure. J. Anal. At. Spectrom. 2013, 28, 524-535.

51

Ito, A.; Suenaga, M.; Ono, K. Mossbauer study of soluble Prussian blue, insoluble Prussian blue and Turnbulls blue. J. Chem. Physics 1968, 48, 3597-3599.

52

Buschmann, W. E.; Ensling, J.; Gutlich, P.; Miller, J. S. Electron transfer, linkage isomerization, bulk magnetic order, and spin-glass behavior in the iron hexacyanomanganate Prussian blue analogue. Chem. -Eur. J. 1999, 5, 3019-3028.

DOI
53

Okubo, M.; Asakura, D.; Mizuno, Y.; Kudo, T.; Zhou, H. S.; Okazawa, A.; Kojima, N.; Ikedo, K.; Mizokawa, T.; Honma, I. Ion-induced transformation of magnetism in a bimetallic CuFe Prussian blue analogue. Angew. Chem. Int. Ed. 2011, 50, 6269-6273.

54

Mizuno, Y.; Okubo, M.; Kagesawa, K.; Asakura, D.; Kudo, T.; Zhou, H. S.; Oh-ishi, K.; Okazawa, A.; Kojima, N. Precise electrochemical control of ferromagnetism in a cyanide-bridged bimetallic coordination polymer. Inorg. Chem. 2012, 51, 10311-10316.

55

Nossol, E.; Gorgatti Zarbin, A. J. Transparent films from carbon nanotubes/prussian blue nanocomposites: Preparation, characterization, and application as electrochemical sensors. J. Mater. Chem. 2012, 22, 1824-1833.

56

Giorgetti, M.; Guadagnini, L.; Tonelli, D.; Minicucci, M.; Aquilanti, G. Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. Phys. Chem. Chem. Phys. 2012, 14, 5527-5537.

57

Nam, K. W.; Bak, S. M.; Hu, E. Y.; Yu, X. Q.; Zhou, Y. N.; Wang, X. J.; Wu, L. J.; Zhu, Y. M.; Chung, K. Y.; Yang, X. Q. Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 2013, 23, 1047-1063.

58

Yokoyama, T.; Tokoro, H.; Ohkoshi, S.; Hashimoto, K.; Okamoto, K.; Ohta, T. Photoinduced phase transition of RbMnFe(CN)6 studied by X-ray-absorption fine structure spectroscopy. Phys. Rev. B 2002, 66, 184111.

59

Yu, X. Q; Lyu, Y. C.; Gu, L.; Wu, H. M.; Bak, S. M.; Zhou, Y. N.; Amine, K.; Ehrlich, S. N.; Li, H.; Nam, K. W.; Yang, X. Q. Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 2014, 4, 1300950.

60

Bleuzen, A.; Lomenech, C.; Escax, V.; Villain, F.; Varret, F.; Moulin, C. C. D.; Verdaguer, M. Photoinduced ferrimagnetic systems in Prussian blue analogues CIxCo4[Fe(CN)6]y (CI = alkali cation). 1. Conditions to observe the phenomenon. J. Am. Chem. Soc. 2000, 122, 6648-6652.

File
12274_2014_588_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 August 2014
Revised: 11 September 2014
Accepted: 16 September 2014
Published: 27 October 2014
Issue date: January 2015

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51225204, 91127044 and 21121063), the National Basic Research Program of China (Nos. 2012CB932900 and 2011CB935700). The work at BNL was supported by the U. S. Department of Energy, the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies (No. DE-AC02-98CH10886). The authors acknowledge the technical support from beamline scientists at X14A, X18A and X19A (NSLS, BNL).

Return