Journal Home > Volume 8 , Issue 3

Reduced graphene oxide (RGO) has been covalently functionalized with porphyrin moieties by two methods: A straightforward Prato reaction (i.e. a 1, 3-dipolar cycloaddition) with sarcosine and a formyl-containing porphyrin, and a stepwise method that involves a 1, 3-dipolar cycloaddition to the RGO surface using 4-hydroxybenzaldehyde, followed by nucleophilic substitution with an appropriate porphyrin. The chemical bonding of porphyrins to the RGO surface has been confirmed by ultraviolet/visible absorption, fluorescence, Fourier-transform infrared, and Raman spectroscopies, X-ray powder diffraction and X-ray photoelectron spectroscopy, transmission electron and atomic force microscopy, and thermogravimetric analysis; this chemical attachment assures efficient electron/energy transfer between RGO and the porphyrin, and affords improved optical nonlinearities compared to those of the RGO precursor and the pristine porphyrin.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A 1, 3-dipolar cycloaddition protocol to porphyrin-functionalized reduced graphene oxide with a push-pull motif

Show Author's information Aijian Wang1,2Wang Yu1Zhengguo Xiao3Yinglin Song3Lingliang Long1Marie P. Cifuentes4Mark G. Humphrey4Chi Zhang1,2,4( )
China-Australia Joint Research Center for Functional Molecular MaterialsSchool of Chemical and Material Engineering, Jiangnan UniversityWuxi214122China
China-Australia Joint Research Center for Functional Molecular MaterialsScientific Research Academy, Jiangsu UniversityZhenjiang212013China
School of Physical Science and TechnologySoochow UniversitySuzhou215006China
Research School of ChemistryAustralian National UniversityCanberra, ACT0200Australia

Abstract

Reduced graphene oxide (RGO) has been covalently functionalized with porphyrin moieties by two methods: A straightforward Prato reaction (i.e. a 1, 3-dipolar cycloaddition) with sarcosine and a formyl-containing porphyrin, and a stepwise method that involves a 1, 3-dipolar cycloaddition to the RGO surface using 4-hydroxybenzaldehyde, followed by nucleophilic substitution with an appropriate porphyrin. The chemical bonding of porphyrins to the RGO surface has been confirmed by ultraviolet/visible absorption, fluorescence, Fourier-transform infrared, and Raman spectroscopies, X-ray powder diffraction and X-ray photoelectron spectroscopy, transmission electron and atomic force microscopy, and thermogravimetric analysis; this chemical attachment assures efficient electron/energy transfer between RGO and the porphyrin, and affords improved optical nonlinearities compared to those of the RGO precursor and the pristine porphyrin.

Keywords: reduced graphene oxide, porphyrin, cycloaddition, nonlinear optics

References(75)

1

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60-63.

2

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

3

Xu, Y. X.; Lin, Z. Y.; Huang, X. Q.; Liu, Y.; Huang, Y.; Duan, X. F. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. ACS Nano 2013, 7, 4042-4049.

4

Georgakilas, V.; Otyepka, M.; Bourlinos, A. B.; Chandra, V.; Kim, N.; Kemp, K. C.; Hobza, P.; Zboril, R.; Kim, K. S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 2012, 112, 6156-6214.

5

Zhang, X.; Hou, L.; Cnossen, A.; Coleman, A. C.; Ivashenko, O.; Rudolf, P.; van Wees, B. J.; Browne, W. R.; Feringa, B. L. One-pot functionalization of graphene with porphyrin through cycloaddition reactions. Chem. —Eur. J. 2011, 17, 8957-8964.

6

Chua, C. K.; Pumera, M. Covalent chemistry on graphene. Chem. Soc. Rev. 2013, 42, 3222-3233.

7

Ragoussi, M. E.; Casado, S.; Ribeiro-Viana, R.; de la Torre, G.; Rojo, J.; Torres, T. Selective carbohydrate-lectin interactions in covalent graphene- and SWCNT-based molecular recognition systems. Chem. Sci. 2013, 4, 4035-4041.

8

Wu, Q.; Xu, Y. X.; Yao, Z. Y.; Liu, A. R.; Shi, G. Q. Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 2010, 4, 1963-1970.

9

Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5, 10, 15, 20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(Ⅱ) ions. J. Am. Chem. Soc. 2009, 131, 13490-13497.

10

Li, Y. X.; Zhu, J. H.; Chen, Y.; Zhang, J. J.; Wang, J.; Zhang, B.; He, Y.; Blau, W. J. Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine. Nanotechnology 2011, 22, 205704.

11

Westervelt, R. M. Graphene nanoelectronics. Science 2008, 320, 324-325.

12

Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Surface transfer p-type doping of epitaxial graphene. J. Am. Chem. Soc. 2007, 129, 10418-10422.

13

Arnold, D. P.; Worthington, E. I.; Sakata, Y.; Sugiura, K. meso-ŋ1-Metalloporphyrins: Preparation of palladio- and platinioporphyrins and the crystal structure of 5-[bromo-1, 2-bis(diphenylphosphino)ethanepalladio(Ⅱ)]-10, 20-diphenylporphyrin. Chem. Commun. 1998, 2331-2332.

14

Merhi, A.; Drouet, S.; Kerisit, N.; Paul-Roth, C. O. Linear porphyrin dimers with fluorenyl arms linked by an ethynyl bridge. Tetrahedron 2013, 69, 7112-7124.

15

Saito, S.; Osuka, A. Expanded porphyrins: Intriguing structures, electronic properties, and reactivities. Angew. Chem. Int. Ed. 2011, 50, 4342-4373.

16

Esdaile, L. J.; Jensen, P.; McMurtrie, J. C.; Arnold, D. P. Azoporphyrin: The porphyrin analogue of azobenzene. Angew. Chem. Int. Ed. 2007, 46, 2090-2093.

17

Guldi, D. M.; Rahman, G. M. A.; Sgobba, V.; Ehli, C. Multifunctional molecular carbon materials〞from fullerenes to carbon nanotubes. Chem. Soc. Rev. 2006, 35, 471-487.

18

Wang, A. J.; Fang, Y.; Long, L. L.; Song, Y. L.; Yu, W.; Zhao, W.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. Facile synthesis and enhanced nonlinear optical properties of porphyrin-functionalized multi-walled carbon nanotubes. Chem. —Eur. J. 2013, 19, 14159-14170.

19

Wang, A. J.; Fang, Y.; Yu, W.; Long, L. L.; Song, Y. L.; Zhao, W.; Cifuentes, M. P.; Humphrey, M. G.; Zhang, C. Allyloxyporphyrin-functionalized multiwalled carbon nanotubes: Synthesis by radical polymerization and enhanced optical-limiting properties. Chem. —Asian J. 2014, 9, 639-648.

20

Zhu, J. H.; Li, Y. X.; Chen, Y.; Wang, J.; Zhang, B.; Zhang, J. J.; Blau, W. J. Graphene oxide covalently functionalized with zinc phthalocyanine for broadband optical limiting. Carbon 2011, 49, 1900-1905.

21

Liu, Y. S.; Zhou, J. Y.; Zhang, X. L.; Liu, Z. B.; Wan, X. J.; Tian, J. G.; Wang, T.; Chen, Y. S. Synthesis, characterization and optical limiting property of covalently oligothiophene-functionalized graphene material. Carbon 2009, 47, 3113-3121.

22

Nalla, V.; Polavarapu, L.; Manga, K. K.; Goh, B. M.; Loh, K. P.; Xu, Q. H.; Ji, W. Transient photoconductivity and femtosecond nonlinear optical properties of a conjugated polymer-graphene oxide composite. Nanotechnology 2010, 21, 415203.

23

Wang, A. J.; Long, L. L.; Zhao, W.; Song, Y. L.; Humphrey, M. G.; Cifuentes, M. P.; Wu, X. Z.; Fu, Y. S.; Zhang, D. D.; Li, X. F. et al. Increased optical nonlinearities of graphene nanohybrids covalently functionalized by axially-coordinated porphyrins. Carbon 2013, 53, 327-338.

24

Kamat, P. V. Graphene-based nanoassemblies for energy conversion. J. Phys. Chem. Lett. 2011, 2, 242-251.

25

Zhang, B.; Chen, Y.; Liu, G.; Xu, L. Q.; Chen, J. N.; Zhu, C. X.; Neoh, K. G.; Kang, E. T. Push-pull archetype of reduced graphene oxide functionalized with polyfluorene for nonvolatile rewritable memory. J. Polym. Sci., A: Polym. Chem. 2012, 50, 378-387.

26

Zhou, Y.; Bao, Q. L.; Tang, L. A. L.; Zhong, Y. L.; Loh, K. P. Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem. Mater. 2009, 21, 2950-2956.

27

Li, P. P.; Chen, Y.; Zhu, J. H.; Feng, M.; Zhuang, X. D.; Lin, Y.; Zhan, H. B. Charm-bracelet-type poly(N-vinylcarbazole) functionalized with reduced graphene oxide for broadband optical limiting. Chem. —Eur. J. 2011, 17, 780-785.

28

Maggini, M.; Scorrano, G.; Prato, M. Addition of azomethine ylides to C60: Synthesis, characterization, and functionalization of fullerene pyrrolidines. J. Am. Chem. Soc. 1993, 115, 9798-9799.

29

Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 2002, 124, 760-761.

30

Ballesteros, B.; de la Torre, G.; Ehli, C.; Rahman, G. M. A.; Agulló-Rueda, F.; Guldi, D. M.; Torres, T. Single-wall carbon nanotubes bearing covalently linked phthalocyanines—photoinduced electron transfer. J. Am. Chem. Soc. 2007, 129, 5061-5068.

31

Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228-240.

32

Segura, J. L.; Martin, N.; Guldi, D. M. Materials for organic solar cells: The C60/π-conjugated oligomer approach. Chem. Soc. Rev. 2005, 34, 31-47.

33

Cao, Y.; Houk, K. N. Computational assessment of 1, dipolar cycloadditions to graphene. J. Mater. Chem. 2011, 21, 1503-1508.

34

Ou, B.; Zhou, Z.; Liu, Q.; Liao, B.; Yi, S.; Ou, Y.; Zhang, X.; Li, D. Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature. Polym. Chem. 2012, 3, 2768-2775.

35

Quintana, M.; Spyrou, K.; Grzelczak, M.; Browne, W. R.; Rudolf, P.; Prato, M. Functionalization of graphene via 1, 3-dipolar cycloaddition. ACS Nano 2010, 4, 3527-3533.

36

Quintana, M.; Vazquez, E.; Prato, M. Organic functionalization of graphene in dispersions. Acc. Chem. Res. 2013, 46, 138-148.

37

Quintana, M.; Montellano, A.; Castillo, A. E. D. R.; Tendeloo, G. V.; Bittencourt, C.; Prato, M. Selective organic functionalization of graphene bulk or graphene edges. Chem. Commun. 2011, 47, 9330-9332.

38

Castelaín, M.; Martínez, G.; Merino, P.; Martín-Gago, J. Á.; Segura, J. L.; Ellis, G.; Salavagione, H. J. Graphene functionalisation with a conjugated poly(fluorene) by click coupling: Striking electronic properties in solution. Chem. —Eur. J. 2012, 18, 4965-4973.

39

Liu, Z. B.; Guo, Z.; Zhang, X. L.; Zheng, J. Y.; Tian, J. G. Increased optical nonlinearities of multi-walled carbon nanotubes covalently functionalized with porphyrin. Carbon 2013, 51, 419-426.

40

Balapanuru, J.; Yang, J. X.; Xiao, S.; Bao, Q. L.; Jahan, M.; Polavarapu, L.; Wei, J.; Xu, Q. H.; Loh, K. P. A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew. Chem. Int. Ed. 2010, 49, 6549-6553.

41

Li, Z.; Chen, Y. J.; Du, Y. K.; Wang, X. M.; Yang, P.; Zheng, J. W. Triphenylamine-functionalized graphene decorated with Pt nanoparticles and its application in photocatalytic hydrogen production. Int. J. Hydrogen Energy 2012, 37, 4880-4888.

42

Fan, W. Q.; Lai, Q. H.; Zhang, Q. H.; Wang, Y. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C 2011, 115, 10694-10701.

43

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

44

Georgakilas, V.; Bourlinos, A. B.; Zboril, R.; Steriotis, T. A.; Dallas, P.; Stubos, A. K.; Trapalis, C. Organic functionalisation of graphenes. Chem. Commun. 2010, 46, 1766-1768.

45

Gong, F.; Xu, X.; Zhou, G.; Wang, Z. S. Enhanced charge transportation in a polypyrrole counter electrode via incorporation of reduced graphene oxide sheets for dye-sensitized solar cells. Phys. Chem. Chem. Phys. 2013, 15, 546-552.

46

Hsiao, M. C.; Liao, S. H.; Yen, M. Y.; Liu, P. I.; Pu, N. W.; Wang, C. A.; Ma, C. C. M. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Appl. Mater. Inter. 2010, 2, 3092-3099.

47

Jeong, H. K.; Lee, Y. P.; Lahaye, R. J. W. E.; Park, M. H.; An, K. H.; Kim, I. J.; Yang, C. W.; Park, C. Y.; Ruoff, R. S.; Lee, Y. H. Evidence of graphitic AB stacking order of graphite oxides. J. Am. Chem. Soc. 2008, 130, 1362-1366.

48

Bourlinos, A. B.; Gournis, D.; Petridis, D.; Szabó, T.; Dékány, I. Graphite oxide: Chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Lamgmuir 2003, 19, 6050-6055.

49

Han, Y. Q.; Lu, Y. Preparation and characterization of graphite oxide/polypyrrole composites. Carbon 2007, 45, 2394-2399.

50

Guo, C. X.; Yang, H. B.; Sheng, Z. M.; Lu, Z. S.; Song, Q. L.; Li, C. M. Layered graphene/quantum dots for photovoltaic devices. Angew. Chem. Int. Ed. 2010, 49, 3014-3017.

51

Shen, J. F.; Li, N.; Shi, M.; Hu, Y. Z.; Ye, M. X. Covalent synthesis of organophilic chemically functionalized graphene sheets. J. Colloid. Interf. Sci. 2010, 348, 377-383.

52

Stankovich, S.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44, 3342-3347.

53

Chang, C. M.; Liu, Y. L. Functionalization of multi-walled carbon nanotubes with furan and maleimide compounds through Diels-Alder cycloaddition. Carbon 2009, 47, 3041-3049.

54

Yang, K.; Gu, M. Y.; Guo, Y. P.; Pan, X. F.; Mu, G. H. Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 2009, 47, 1723-1737.

55

Shao, H. Z.; Shi, Z. X.; Fang, J. H.; Yin, J. One pot synthesis of multiwalled carbon nanotubes reinforced polybenzimidazole hybrids: Preparation, characterization and properties. Polymer 2009, 50, 5987-5995.

56

Wei, W.; He, T. C.; Teng, X.; Wu, S. X.; Ma, L.; Zhang, H.; Ma, J.; Yang, Y. H.; Chen, H. Y.; Han, Y.; Sun, H. D.; Huang, L. Nanocomposites of graphene oxide and upconversion rare-earth nanocrystals with superior optical limiting performance. Small 2012, 8, 2271-2276.

57

Shao, P.; Li, Y. J.; Sun, W. F. Cyclometalated platinum(Ⅱ) complex with strong and broadband nonlinear optical response. J. Phys. Chem. A 2008, 112, 1172-1179.

58

Su, X. Y.; Guang, S. Y.; Li, C. W.; Xu, H. Y.; Liu, X. Y.; Wang, X.; Song, Y. L. Molecular hybrid optical limiting materials from polyhedral oligomer silsequioxane: Preparation and relationship between molecular structure and properties. Macromolecules 2010, 43, 2840-2845.

59

Hou, H. W.; Song, Y. L.; Xu, H.; Wei, Y. L.; Fan, Y. T.; Zhu, Y.; Li, L. K.; Du, C. X. Polymeric complexes with "piperazine-pyridine" building blocks: Synthesis, network structures, and third-order nonlinear optical properties. Macromolecules 2003, 36, 999-1008.

60

Wang, J.; Blau, W. J. Solvent effect on optical limiting properties of single-walled carbon nanotube dispersions. J. Phys. Chem. C 2008, 112, 2298-2303.

61

Filidou, V.; Chatzikyriakos, G.; Lliopoulos, K.; Couris, S.; Bonifazi, D. The effect of charge transfer on the NLO response of some porphyrin [60]fullerene dyads. AIP Conf. Proc. 2010, 1288, 188-191.

62

Argouarch, G.; Veillard, R.; Roisnel, T.; Amar, A.; Meghezzi, H.; Boucekkine, A.; Hugues, V.; Mongin, O.; Blanchard-Desce, M.; Paul, F. Triaryl-1, 3, 5-triazinane-2, 4, 6-triones (isocyanurates) peripherally functionalized by donor groups: Synthesis and study of their linear and nonlinear optical properties. Chem. —Eur. J. 2012, 18, 11811-11827.

63

Liu, Z. B.; Wang, Y.; Zhang, X. L.; Xu, Y. F.; Chen, Y. S.; Tian, J. G. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes. Appl. Phys. Lett. 2009, 94, 021902.

64

Krishna, M. B. M.; Venkatramaiah, N.; Venkatesan, R.; Rao, D. N. Nonlinear optical properties of graphene (OH, Sn) porphyrin composites in picosecond regime. AIP Conf. Proc. 2011, 1391, 680-682.

65

Wang, J.; Hernandez, Y.; Lotya, M.; Coleman, J. N.; Blau, W. J. Broadband nonlinear optical response of graphene dispersions. Adv. Mater. 2009, 21, 2430-2435.

66

Xu, X. J.; Chen, J.; Luo, X. L.; Lu, J. J.; Zhou, H. X.; Wu, W. B.; Zhan, H. B.; Dong, Y. Q.; Yan, S. K.; Qin, J. G. et al. Poly(9, 9'-diheylfluorene carbazole) functionalized with reduced graphene oxide: Convenient synthesis using nitrogen-based nucleophiles and potential applications in optical limiting. Chem. —Eur. J. 2012, 18, 14384-14391.

67

Kavitha, M. K.; John, H.; Gopinath, P.; Philip, R. Synthesis of reduced graphene oxide-ZnO hybrid with enhanced optical limiting properties. J. Mater. Chem. C 2013, 1, 3669-3676.

68

Anand, B.; Kaniyoor, A.; Sai, S. S. S.; Philip, R.; Ramaprabhu, S. Enhanced optical limiting in functionalized hydrogen exfoliated graphene and its metal hybrids. J. Mater. Chem. C 2013, 1, 2773-2780.

69

Liu, Z. B.; Xu, Y. F.; Zhang, X. Y.; Zhang, X. L.; Chen, Y. S.; Tian, J. G. Porphyrin and fullerene covalently functionalized graphene hybrid materials with large nonlinear optical properties. J. Phys. Chem. B 2009, 113, 9681-9686.

70

Liu, Z. B.; Tian, J. G.; Guo, Z.; Ren, D. M.; Du, F.; Zheng, J. Y.; Chen, Y. S. Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv. Mater. 2008, 20, 511-515.

71

Li, P. P.; Niu, L. J.; Chen, Y.; Wang, J.; Liu, Y.; Zhang, J. J.; Blau, W. J. In situ synthesis and optical limiting response of poly(N-vinylcarbazole) functionalized single-walled carbon nanotubes. Nanotechnology 2011, 22, 015204.

72

D'Souza, F.; Gadde, S.; Zandler, M. E.; Arkady, K.; El-Khouly, M. E.; Fujitsuka, M.; Ito, O. Studies on covalently linked porphyrin-C60 dyads: Stabilization of charge-separated states by axial coordination. J. Phys. Chem. A 2002, 106, 12393-12404.

73

Bhyrappa, P.; Krishnan, V. Covalently linked bisporphyrins bearing tetraphenylporphyrin and perbromoporphyrin units: Synthesis and their properties. J. Chem. Sci. 2004, 116, 71-78.

74

Shen, J. F.; Hu, Y. Z.; Li, C.; Qin, C.; Ye, M. X. Synthesis of amphiphilic graphene nanoplatelets. Small 2009, 5, 82-85.

75

Yoon, Z. S.; Cho, D. G.; Kim, K. S.; Sessler, J. L.; Kim, D. Nonlinear optical properties as a guide to aromaticity in congeneric pentapyrrolic expanded porphyrins: Pentaphyrin, sapphyrin, isosmaradyrin, and orangarin. J. Am. Chem. Soc. 2008, 130, 6930-6931.

File
12274_2014_569_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 June 2014
Revised: 24 August 2014
Accepted: 24 August 2014
Published: 01 October 2014
Issue date: March 2015

Copyright

© Tsinghua University Press and Springer-Verlag Heidelberg 2014

Acknowledgements

Acknowledgements

Financial support from the National Natural Science Foundation of China (Nos. 51432006, 50925207 and 51172100), the Ministry of Science and Technology of China for the International Science Linkages Program (Nos. 2009DFA50620 and 2011DFG52970), the Ministry of Education of China for the Changjiang Innovation Research Team (No. IRT1064), the Ministry of Education and the State Administration of Foreign Experts Affairs for the 111 Project (No. B13025), and Jiangsu Innovation Research Team are gratefully acknowledged. M. G. H and M. P. C. thank the Australian Research Council (ARC) for support.

Return