Journal Home > Volume 8 , Issue 3

Bi-Te nanoplates (NPs) grown by a low pressure vapor transport method have been studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones and display characteristic changes with the increase of Bi concentration. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Laser induced oxidation and optical properties of stoichiometric and non-stoichiometric Bi2Te3 nanoplates

Show Author's information Rui He1( )Sukrit Sucharitakul2Zhipeng Ye1Courtney Keiser1Tim E. Kidd1Xuan P. A. Gao2
Department of PhysicsUniversity of Northern Iowa, Cedar FallsIowa50614USA
Department of PhysicsCase Western Reserve University, ClevelandOhio44106USA

Abstract

Bi-Te nanoplates (NPs) grown by a low pressure vapor transport method have been studied by Raman spectroscopy, atomic force microscopy (AFM), energy-dispersive X-ray spectroscopy (EDS), and Auger electron spectroscopy (AES). We find that the surface of relatively thick (more than tens of nanometers) Bi2Te3 NPs is oxidized in the air and forms a bump under heating with moderate laser power, as revealed by the emergence of Raman lines characteristic of Bi2O3 and TeO2 and characterization by AFM and EDS. Further increase of laser power burns holes on the surface of the NPs. Thin (thicknesses less than 20 nm) NPs with stoichiometry different from Bi2Te3 were also studied. Raman lines from non-stoichiometric NPs are different from those of stoichiometric ones and display characteristic changes with the increase of Bi concentration. Thin NPs with the same thickness but different stoichiometries show different color contrast compared to the substrate in the optical image. This indicates that the optical absorption coefficient in thin Bi-Te NPs strongly depends on their stoichiometry.

Keywords: Raman spectroscopy, bismuth telluride, oxidation, stoichiometry, nanoplate

References(25)

1

Chen, Y. L.; Analytis, J. G.; Chu, J. H.; Liu, Z. K.; Mo, S. K.; Qi, X. L.; Zhang, H. J.; Lu, D. H.; Dai, X.; Fang, Z. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 2009, 325, 178-181.

2

Zhang, H. J.; Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 2009, 5, 438-442.

3

Hsieh, D.; Xia, Y.; Qian, D.; Wray, L.; Dil, J. H.; Meier, F.; Osterwalder, J.; Patthey, L.; Checkelsky, J. G.; Ong, N. P. et al. A tunable topological insulator in the spin helical dirac transport regime. Nature 2009, 460, 1101-1105.

4

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045-3067.

5

Lee, J.; Kim, J.; Moon, W.; Berger, A.; Lee, J. Enhanced Seebeck coefficients of thermoelectric Bi2Te3 nanowires as a result of an optimized annealing process. J. Phys. Chem. C 2012, 116, 19512-19516.

6

Yu, F. R.; Zhang, J. J.; Yu, D. L.; He, J. L.; Liu, Z. Y.; Xu, B.; Tian, Y. J. Enhanced thermoelectric figure of merit in nanocrystalline Bi2Te3 bulk. J. Appl. Phys. 2009, 105, 094303.

7

Wright, D. A. Thermoelectric properties of bismuth telluride and its alloys. Nature 1958, 181, 834.

8

Yamana, K.; Kihara, K.; Matsumoto, T. Bismuth tellurides: BiTe and Bi4Te3. Acta Cryst. 1979, B35, 147-149.

9

Kim, Y.; Cho, S.; DiVenere, A.; Wong, G. K. L.; Ketterson, J. B. Composition-dependent layered structure and transport properties in BiTe thin films. Phys. Rev. B 2001, 63, 155306.

10

Russo, V.; Bailini, A.; Zamboni, M.; Passoni, M.; Conti, C.; Casari, C. S.; Bassi, A. L.; Bottani, C. E. Raman spectroscopy of Bi-Te thin films. J. Raman Spectrosc. 2008, 39, 205-210.

11

Teweldebrhan, D.; Goyal, V.; Balandin, A. A. Exfoliation and characterization of bismuth telluride atomic quintuples and quasi-two-dimensional crystals. Nano Lett. 2010, 10, 1209-1218.

12

Jones, P.; Huber, T. E.; Melngailis, J.; Barry, J.; Ervin, M. H.; Zheleva, T. S.; Nikolaeva, A.; Konopko, L.; Graf, M. Electrical contact resistance of bismuth telluride nanowires. In Proceedings of the 25th International Conference on Thermolelectrics, Vienna, Austria, 2006, pp 693-696.

13

Qu, D. X.; Hor, Y. S.; Xiong, J.; Cava, R. J.; Ong, N. P. Quantum oscillations and hall anomaly of surface states in the topological insulator Bi2Te3. Science 2010, 329, 821-824.

14

Ren, Z.; Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Optimizing Bi2-xSbxTe3-ySey solid solutions to approach the intrinsic topological insulator regime. Phys. Rev. B 2011, 84, 165311.

15

Kong, D. S.; Chen, Y. L.; Cha, J. J.; Zhang, Q. F.; Analytis, J. G.; Lai, K. J.; Liu, Z. K.; Hong, S. S.; Koski, K. J.; Mo, S. K. et al. Ambipolar field effect in the ternary topological insulator (BixSb1-x)2Te3 by composition tuning. Nat. Nanotechnol. 2011, 6, 705-709.

16

Wang, Z. H.; Qiu, R. L. J.; Lee, C. H.; Zhang, Z. D.; Gao, X. P. A. Ambipolar surface conduction in ternary topological insulator Bi2(Te1-xSex)3 nanoribbons. ACS Nano 2013, 7, 2126-2131.

17

Tang, H.; Liang, D.; Qiu, R. L. J.; Gao, X. P. A. Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano 2011, 5, 7510-7516.

18

Kong, D. S.; Dang, W. H.; Cha, J. J.; Li, H.; Meister, S.; Peng, H. L.; Liu, Z. F.; Cui, Y. Few-layer nanoplates of Bi2Se3 and Bi2Te3 with highly tunable chemical potential. Nano Lett. 2010, 10, 2245-2250.

19

Kullmann, W.; Geurts, J.; Richter, W.; Lehner, N.; Rauh, H.; Steigenberger, U.; Eichhorn, G.; Geick, R. Effect of hydrostatic and uniaxial pressure on structural properties and raman active lattice vibrations in Bi2Te3. Phys. Status Solidi B 1984, 125, 131-138.

20

He, R.; Wang, Z. H.; Qiu, R. L. J.; Delaney, C.; Beck, B.; Kidd, T. E.; Chancey, C. C.; Gao, X. P. A. Observation of infrared-active modes in Raman scattering from topological insulator nanoplates. Nanotechnology 2012, 23, 455703.

21

Salazar-Pérez, A. J.; Camacho-López, M. A.; Morales-Luckie, R. A.; Sánchez-Mendieta, V.; Ureña-Núñez, F.; Arenas-Alatorre, J. Structural evolution of Bi2O3 prepared by thermal oxidation of bismuth nano-particles. Superficies y Vacío 2005, 18, 4-8.

22

Guo, J. H.; Qiu, F.; Zhang, Y.; Deng, H. Y.; Hu, G. J.; Li, X. N.; Yu, G. L.; Dai, N. Surface oxidation properties in a topological insulator Bi2Te3 film. Chin. Phys. Lett. 2013, 30, 106801.

23

Pine, A. S.; Dresselhaus, G. Raman scattering in paratellurite, TeO2. Phys. Rev. B 1972, 5, 4087-4093.

24

Zhang, J.; Peng, Z. P.; Soni, A.; Zhao, Y. Y.; Xiong, Y.; Peng, B.; Wang, J. B.; Dresselhaus, M. S.; Xiong, Q. H. Raman spectroscopy of few-quintuple layer topological insulator Bi2Se3 nanoplatelets. Nano Lett. 2011, 11, 2407-2414.

25

Shahil, K. M. F.; Hossain, M. Z.; Teweldebrhan, D.; Balandin, A. A. Crystal symmetry breaking in few-quintuple Bi2Te3 films: Applications in nanometrology of topological insulators. Appl. Phys. Lett. 2010, 96, 153103.

File
12274_2014_567_MOESM1_ESM.pdf (983.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 July 2014
Revised: 11 August 2014
Accepted: 18 August 2014
Published: 27 September 2014
Issue date: March 2015

Copyright

© Tsinghua University Press and Springer-Verlag Heidelberg 2014

Acknowledgements

Acknowledgements

Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund (No. 53401-UNI10) for support of this research. S. S. thanks Wayne Jennings for his assistance with the AES measurements. R. H. acknowledges support from UNI Faculty Summer Fellowship. T. E. K. acknowledges support by NSF RUI Grant (No. DMR-1206530) and a UNI capacity building grant. R. H. and T. E. K. both acknowledge the support by NSF RUI Grant (No. DMR-1410496). X. P. A. G. acknowledges the NSF CAREER Award program (No. DMR-1151534) for support of research at CWRU.

Return